Chapter 6: Equilibrium

Comprehensive Study Notes

Class 11 Chemistry - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Chemical equilibria play crucial roles in biological and environmental processes. The transport of O₂ by hemoglobin, the toxicity of CO, and numerous industrial processes all depend on equilibrium principles. When a liquid evaporates in a closed container, an equilibrium establishes between liquid and vapor phases where the rate of evaporation equals the rate of condensation.

Key Concept: Equilibrium is dynamic - there is continuous molecular activity at the boundary between phases, but no net change occurs.

6.1 Equilibrium in Physical Processes

Basic Characteristics:

- **Dynamic Nature**: Opposing processes occur simultaneously at equal rates
- Closed System Required: Equilibrium possible only in closed systems
- **Constant Properties**: All measurable properties remain constant
- Temperature Dependent: Equilibrium position varies with temperature

6.1.1 Solid-Liquid Equilibrium

Example: Ice-water equilibrium at 273K and 1 atm

Key Features:

- Mass of ice and water remain constant
- Continuous molecular exchange at interface
- Normal melting/freezing point: Temperature where solid-liquid phases coexist at 1 atm

Representation: $H_2O(s) \rightleftharpoons H_2O(l)$

6.1.2 Liquid-Vapor Equilibrium

Experimental Setup: Water in closed container with manometer

Observations:

- Mercury level rises initially, then becomes constant
- Water volume decreases until equilibrium
- Rate of evaporation = Rate of condensation

Key Concepts:

- Vapor Pressure: Constant pressure exerted by vapor at equilibrium
- **Volatility**: Higher vapor pressure = more volatile = lower boiling point
- Normal Boiling Point: Temperature where liquid-vapor equilibrium exists at 1 atm

Representation: $H_2O(I) \rightleftharpoons H_2O(g)$

6.1.3 Solid-Vapor Equilibrium (Sublimation)

Example: lodine sublimation

- Solid I₂ → I₂ vapor (violet color)
- Intensity becomes constant at equilibrium

Other Examples:

- Camphor(s) \rightleftharpoons Camphor(g)
- $NH_4Cl(s) \rightleftharpoons NH_4Cl(g)$

Representation: $I_2(s) \rightleftharpoons I_2(g)$

6.1.4 Dissolution Equilibria

Solids in Liquids:

Saturated Solution: No more solute can dissolve at given temperature

Dynamic Process: Sugar(solution) ≠ Sugar(solid)

- Rate of dissolution = Rate of crystallization
- Confirmed by radioactive tracer experiments

Gases in Liquids:

Example: CO₂ in soda water

- $CO_2(q) \rightleftharpoons CO_2(solution)$
- Governed by **Henry's Law**: Mass of dissolved gas ∝ pressure of gas
- Explains fizzing when bottle opened (pressure decrease)

Summary of Physical Equilibria

Process	Equilibrium Condition
Liquid ≠ Vapor	Constant vapor pressure at given T
Solid ≠ Liquid	Fixed melting point at constant P
Solute(s) ⇒ Solute(solution)	Constant solubility at given T
$Gas(g) \rightleftharpoons Gas(aq)$	[gas(aq)]/[gas(g)] = constant at given T
4	

6.2 Chemical Equilibrium - Dynamic Equilibrium

Definition:

When rates of forward and reverse reactions become equal, concentrations of reactants and products remain constant - this is **chemical equilibrium**.

General Reaction:

$$A + B \rightleftharpoons C + D$$

Key Features:

- 1. **Reversible**: Can be approached from either direction
- 2. **Dynamic**: Forward and reverse reactions continue
- 3. **Constant Composition**: No net change in concentrations
- 4. **Rate Equality**: Rate(forward) = Rate(reverse)

Demonstration: Haber Process

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Isotope Evidence:

- Using D₂ instead of H₂ shows scrambling of isotopes
- Formation of NH₃, NH₂D, NHD₂, ND₃ proves dynamic nature

Classification by Extent:

- 1. **Nearly Complete**: Negligible reactants remain
- 2. **Minimal Conversion**: Small product formation
- 3. **Appreciable**: Comparable reactant and product concentrations

6.3 Law of Chemical Equilibrium and Equilibrium Constant

Historical Background:

Guldberg and Waage (1864): Proposed Law of Mass Action

For General Reaction:

 $aA + bB \rightleftharpoons cC + dD$

Equilibrium Constant Expression:

 $Kc = [C]^c[D]^d / [A]^a[B]^b$

Where:

Kc = equilibrium constant (concentration basis)

= molar concentration at equilibrium

Superscripts = stoichiometric coefficients

Experimental Verification: $H_2 + I_2 \rightleftharpoons 2HI$

Temperature: 731K

Data Analysis:

• Various initial concentrations tested

• Equilibrium expression: Kc = [HI]²/[H₂][I₂]

• Constant value obtained: Kc = 54.8

Important Relationships:

1. **Reverse Reaction**: K'c = 1/Kc

- 2. **Multiplied Equation**: If equation multiplied by n, then $K''c = (Kc)^n$
- 3. **General Rule**: For net reaction from adding multiple reactions: $K_{net} = K_1 \times K_2 \times K_3...$

6.4 Homogeneous Equilibria

Definition:

All reactants and products in same phase

Examples:

- 1. **Gaseous**: $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 2. **Aqueous**: $CH_3COOC_2H_5(aq) + H_2O(I) \rightleftharpoons CH_3COOH(aq) + C_2H_5OH(aq)$

6.4.1 Equilibrium Constant in Gaseous Systems

Relationship between Kp and Kc:

For ideal gas: p = cRT (where c = concentration in mol/L)

General Derivation: For $aA + bB \rightleftharpoons cC + dD$

 $Kp = Kc(RT)^{\Delta}n$

Where:

- $\Delta n = \text{(moles of gaseous products)} \text{(moles of gaseous reactants)}$
- $R = 0.0831 \text{ bar L mol}^{-1} \text{ K}^{-1}$
- T = temperature in Kelvin

Special Cases:

• If $\Delta n = 0$: Kp = Kc (Example: $H_2 + I_2 \rightleftharpoons 2HI$)

• If $\Delta n \neq 0$: $Kp \neq Kc$

Example: $N_2 + 3H_2 \rightleftharpoons 2NH_3$

•
$$\Delta n = 2 - (1 + 3) = -2$$

•
$$Kp = Kc(RT)^{-2}$$

Units of Equilibrium Constants:

Reaction Type	Kc Units	Kp Units
Δn = 0	Dimensionless	Dimensionless
Δn = 1	mol/L	bar
Δn = -1	L/mol	bar ⁻¹
▲	•	>

6.5 Heterogeneous Equilibria

Definition:

Equilibrium involving more than one phase

Key Principle:

Concentrations of pure solids and liquids are constant and incorporated into equilibrium constant

Examples:

1. CaCO₃ Decomposition:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

Equilibrium Expression:

• Full expression: Kc = [CaO][CO₂]/[CaCO₃]

- Since [CaCO₃] and [CaO] are constant:
- **Modified**: K'c = [CO₂] or Kp = pCO₂

2. Metal-Gas Equilibrium:

$$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$$

Equilibrium Expression: $Kc = [Ni(CO)_4]/[CO]^4$

3. Salt Hydrolysis:

$$Ag_2O(s) + 2HNO_3(aq) \rightleftharpoons 2AgNO_3(aq) + H_2O(l)$$

Equilibrium Expression: $Kc = [AgNO_3]^2/[HNO_3]^2$

Important Note:

Pure solids/liquids must be present for equilibrium to exist, but their concentrations don't appear in Kc expression.

6.6 Applications of Equilibrium Constants

Key Features of Equilibrium Constants:

- 1. **Temperature Dependent**: Unique value for each temperature
- 2. Independent of Initial Concentrations
- 3. **Composition Independent**: Value doesn't change with amounts
- 4. **Reaction Specific**: Different for forward vs reverse reactions
- 5. **Stoichiometry Dependent**: Changes with equation coefficients

6.6.1 Predicting Extent of Reaction

Magnitude Guidelines:

Kc Value	Interpretation	Example
Kc > 10 ³	Products predominate	$H_2 + Cl_2 \rightleftharpoons 2HCl (Kc = 4.0 \times 10^{31})$
$10^{-3} < Kc < 10^{3}$	Appreciable amounts of both	$H_2 + I_2 \rightleftharpoons 2HI (Kc = 57.0)$
$Kc < 10^{-3}$	Reactants predominate	$N_2 + O_2 \rightleftharpoons 2NO (Kc = 4.8 \times 10^{-31})$
▲	1	<u> </u>

6.6.2 Predicting Direction of Reaction

Reaction Quotient (Qc):

Definition: Expression identical to Kc but using non-equilibrium concentrations

For: $aA + bB \rightleftharpoons cC + dD$

 $Qc = [C]^c[D]^d / [A]^a[B]^b$

Direction Prediction:

Comparison	Direction	Explanation
Qc < Kc	Forward →	More products needed
Qc > Kc	Reverse ←	More reactants needed
Qc = Kc	Equilibrium	No net reaction
◀	·	>

6.6.3 Calculating Equilibrium Concentrations

Systematic Approach (ICE Method):

Step 1: Write balanced equation **Step 2**: Create ICE table

- Initial concentrations
- **C**hange in concentrations

• **E**quilibrium concentrations

Step 3: Substitute into Kc expression **Step 4**: Solve for unknown **Step 5**: Calculate final concentrations **Step 6**: Verify by substituting back

Example Problem Setup:

6.7 Relationship between K, Q, and Gibbs Energy

Thermodynamic Relationship:

General Expression:

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

At Equilibrium:

When $\Delta G = 0$ and Q = K:

$$\Delta G^{\circ} = -RT \ln K$$

or

$$K = e^{-\Delta G^{\circ}/RT}$$

Spontaneity Interpretation:

ΔG°	K Value	Reaction Tendency
ΔG° < 0	K > 1	Spontaneous forward
ΔG° > 0	K < 1	Non-spontaneous forward
ΔG° = 0	K = 1	At equilibrium
◀	'	>

Important Constants:

- $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
- T in Kelvin

6.8 Factors Affecting Equilibria

Le Chatelier's Principle:

"If a system at equilibrium is disturbed, the system shifts to counteract the disturbance"

6.8.1 Effect of Concentration Changes

Rules:

- 1. Adding Reactant/Product: Equilibrium shifts to consume added substance
- 2. **Removing Reactant/Product**: Equilibrium shifts to replenish removed substance

Example: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

Adding H₂:

- Qc < Kc (temporarily)
- Equilibrium shifts right
- More HI formed until Qc = Kc again

Industrial Applications:

• **Ammonia Production**: NH₃ continuously removed (liquefaction)

• CaO Production: CO₂ continuously removed from kiln

Demonstration: Fe³⁺ + SCN⁻ ⇌ [Fe(SCN)]²⁺

• Add Fe³⁺: Red color intensifies

• Add SCN⁻: Red color intensifies

• Add oxalic acid: Removes Fe³⁺, red color fades

• Add HgCl₂: Removes SCN⁻, red color fades

6.8.2 Effect of Pressure Changes

Applicable to Gaseous Reactions:

Rule: Pressure increase favors side with fewer gas molecules

Example: $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$

• **Reactants**: 4 moles gas

• **Products**: 2 moles gas

• **Pressure increase**: Shifts right (fewer gas molecules)

Reasoning:

- Volume decrease → Pressure increase
- Concentrations increase
- Qc changes
- System shifts to reduce pressure

Cases Where Pressure Has No Effect:

Equal moles of gas on both sides: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

6.8.3 Effect of Inert Gas Addition

At Constant Volume:

No effect - partial pressures and concentrations unchanged

At Constant Pressure:

Effect possible - volume increases, concentrations decrease

6.8.4 Effect of Temperature Changes

Key Principle:

Temperature change actually changes K value

Rules:

- 1. **Exothermic Reaction** ($\Delta H < 0$):
 - Temperature increase: K decreases
 - Temperature decrease: K increases
- 2. **Endothermic Reaction** ($\Delta H > 0$):
 - Temperature increase: K increases
 - Temperature decrease: K decreases

Examples:

Ammonia Synthesis: $N_2 + 3H_2 \rightleftharpoons 2NH_3$ ($\Delta H = -92.38$ kJ/mol)

- **Exothermic**: Low temperature favors products
- Industrial compromise: Moderate temperature with catalyst

NO₂ Dimerization: $2NO_2(g) \rightleftharpoons N_2O_4(g)$ ($\Delta H = -57.2$ kJ/mol)

- Low temperature: Less brown color (more N₂O₄)
- **High temperature**: More brown color (more NO₂)

Endothermic Example: $[Co(H_2O)_6]^{3+} + 4CI^- \rightleftharpoons [CoCl_4]^{2-} + 6H_2O$

- Room temperature: Blue (products favored)
- **Low temperature**: Pink (reactants favored)

6.8.5 Effect of Catalyst

Key Points:

- 1. No effect on equilibrium position
- 2. Increases rate of both forward and reverse reactions equally
- 3. Reduces activation energy for both directions by same amount
- 4. Helps reach equilibrium faster
- 5. Does not appear in equilibrium expression

Industrial Importance:

- Haber Process: Iron catalyst at 500°C, 200 atm
- **Contact Process**: V₂O₅ or Pt catalyst for SO₃ formation

6.9 Ionic Equilibrium in Solution

Electrolytes vs Non-electrolytes:

Non-electrolytes:

• **Example**: Sugar solution

• Conductivity: No electrical conduction

• **Reason**: No ion formation

Electrolytes:

• **Example**: NaCl solution

• **Conductivity**: Conduct electricity

• Reason: Ion formation

Classification of Electrolytes:

Strong Electrolytes:

• **Ionization**: Nearly 100% dissociated

• Examples: NaCl, HCl, NaOH

• **Representation**: NaCl → Na⁺ + Cl⁻

Weak Electrolytes:

• **Ionization**: Partially dissociated (< 5%)

• Examples: CH₃COOH, NH₄OH

• Equilibrium: CH₃COOH ⇒ CH₃COO⁻ + H⁺

Ionic Equilibrium:

Equilibrium between ions and unionized molecules in weak electrolyte solutions.

6.10 Acids, Bases, and Salts

Natural Occurrence:

• **Gastric juice**: HCl (1.2-1.5 L/day)

• Vinegar: CH₃COOH

• Citrus fruits: Citric acid, ascorbic acid

• Tamarind: Tartaric acid

Etymology:

• "Acid": Latin "acidus" = sour

• Characteristic properties: Sour taste, turn blue litmus red, react with metals

6.10.1 Arrhenius Concept

Definitions:

• **Acid**: Substance that produces H⁺ ions in water

• **Base**: Substance that produces OH⁻ ions in water

Ionization Equations:

Acid: $HX(aq) \rightarrow H^{+}(aq) + X^{-}(aq)$ **Base**: $MOH(aq) \rightarrow M^{+}(aq) + OH^{-}(aq)$

Hydronium Ion:

• **Reality**: H⁺ cannot exist alone in water

• **Actual form**: H₃O⁺ (hydronium ion)

• **Representation**: H⁺(aq) and H₃O⁺(aq) used interchangeably

Limitations:

1. **Solvent restriction**: Applicable only to aqueous solutions

2. **Base definition**: Cannot explain basicity of NH₃ (no OH⁻ group)

6.10.2 Brönsted-Lowry Concept

Definitions:

• **Acid**: Proton (H⁺) donor

• **Base**: Proton (H⁺) acceptor

Example: $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

• **H₂O**: Acts as acid (proton donor)

• **NH**₃: Acts as base (proton acceptor)

Conjugate Acid-Base Pairs:

Definition: Pair differing by one proton

Examples:

• NH₃/NH₄⁺: NH₃ (base), NH₄⁺ (conjugate acid)

• H₂O/OH⁻: H₂O (acid), OH⁻ (conjugate base)

Strength Relationship:

- Strong acid → Weak conjugate base
- Strong base → Weak conjugate acid

Amphoteric Substances:

Can act as both acid and base:

• H₂O, HCO₃⁻, HSO₄⁻, NH₃

6.10.3 Lewis Concept

Definitions:

• **Lewis Acid**: Electron pair acceptor

• **Lewis Base**: Electron pair donor

Example: BF₃ + NH₃ → BF₃:NH₃

• **BF**₃: Lewis acid (accepts electron pair)

• **NH**₃: Lewis base (donates electron pair)

Lewis Acids:

• Electron deficient species: BF₃, AlCl₃

• Cations: Co³⁺, Mg²⁺, H⁺

Lewis Bases:

• Species with lone pairs: H₂O, NH₃, OH⁻, F⁻

6.11 Ionization of Acids and Bases

Strong vs Weak Acids/Bases:

Strong Acids:

Examples: HClO₄, HCl, HBr, HI, HNO₃, H₂SO₄ **Characteristic**: Nearly 100% ionized **Conjugate bases**:

Very weak (ClO_4^- , Cl^- , Br^- , l^- , NO_3^-)

Strong Bases:

Examples: LiOH, NaOH, KOH, CsOH, Ba(OH)₂ Characteristic: Nearly 100% ionized

Weak Acids:

Examples: HNO₂, HF, CH₃COOH **Characteristic**: Partially ionized **Conjugate bases**: Relatively strong

Weak Bases:

Examples: NH₃, amines Characteristic: Partially ionized

6.11.1 Ionization Constant of Water

Autoionization:

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

Equilibrium Expression:

$$Kw = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ (at 298K)}$$

Pure Water:

- $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$
- **Neutral solution**: [H⁺] = [OH⁻]

Solution Types:

- **Acidic**: $[H^+] > [OH^-], [H^+] > 10^{-7} M$
- **Basic**: $[H^+] < [OH^-], [H^+] < 10^{-7} M$
- **Neutral**: $[H^+] = [OH^-] = 10^{-7} M$

6.11.2 pH Scale

Definition:

$$pH = -log[H^+] = -log aH^+$$

pOH Definition:

$$pOH = -log[OH^{-}]$$

Water Equilibrium:

```
pH + pOH = pKw = 14 (at 298K)
```

pH Scale:

• **Acidic**: pH < 7

• **Neutral**: pH = 7

• **Basic**: pH > 7

Common pH Values:

Substance	рН
Concentrated HCI	~-1.0
Gastric juice	~1.2
Lemon juice	~2,2
Soft drinks	~3.0
Black coffee	5.0
Human saliva	6.4
Pure water	7.0
Human blood	7.4
Sea water	7.8
Milk of magnesia	10.0
0.1 M NaOH	13.0
◀	>

pH Measurement:

1. **pH paper**: Accuracy ±0.5 units

2. **pH meter**: Accuracy ±0.001 units

6.11.3 Ionization Constants of Weak Acids

General Equilibrium:

$$HX + H_2O \rightleftharpoons H_3O^+ + X^-$$

ICE Table:

HX
$$H_3O^+$$
 X^- Initial: $c=0=0$ Change: $-c\alpha=+c\alpha=$ Equilibrium: $c(1-\alpha)=c\alpha=$ $c\alpha=$

Acid Ionization Constant:

$$Ka = [H_3O^+][X^-]/[HX] = c\alpha^2/(1-\alpha)$$

Important Values:

Acid	Formula	Ка (298К)
Hydrofluoric	HF	3.5×10 ⁻⁴
Nitrous	HNO ₂	4.5×10 ⁻⁴
Formic	нсоон	1.8×10 ⁻⁴
Acetic	CH₃COOH	1.74×10 ⁻⁵
Hypochlorous	HCIO	3.0×10 ⁻⁸
Hydrocyanic	HCN	4.9×10 ⁻¹⁰
◀	•	>

Relationship:

Stronger acid \rightarrow Larger Ka \rightarrow Smaller pKa

6.11.4 Ionization of Weak Bases

General Equilibrium:

$$B + H_2O \rightleftharpoons BH^+ + OH^-$$

Base Ionization Constant:

$$Kb = [BH^+][OH^-]/[B]$$

Important Values:

Base	Formula	Kb (298K)
Dimethylamine	(CH₃)₂NH	5.4×10 ⁻⁴
Ammonia	NH₃	1.77×10⁻⁵
Pyridine	C₅H₅N	1.77×10 ⁻⁹
Aniline	C ₆ H ₅ NH ₂	4.27×10 ⁻¹⁰
◀	•	>

Relationship:

6.11.5 Relation between Ka and Kb

For Conjugate Acid-Base Pair:

$$Ka \times Kb = Kw = 1.0 \times 10^{-14} \text{ (at 298K)}$$

In Terms of pK:

$$pKa + pKb = pKw = 14 (at 298K)$$

Strength Correlation:

• Strong acid → Weak conjugate base (small Kb)

• Strong base → Weak conjugate acid (small Ka)

6.11.6 Polyprotic Acids

Definition:

Acids with more than one ionizable proton

Stepwise Ionization:

Example: H₂X (diprotic)

First step: $H_2X \rightleftharpoons H^+ + HX^-$; $Ka1 = [H^+][HX^-]/[H_2X]$

Second step: $HX^- \rightleftharpoons H^+ + X^{2-}$; $Ka2 = [H^+][X^{2-}]/[HX^-]$

Important Pattern:

Ka1 > Ka2 > Ka3 (successive ionization becomes harder)

Common Examples:

Acid	Ka1	Ka2	Ка3
H ₂ CO ₃	4.2×10 ⁻⁷	4.8×10 ⁻¹¹	-
H₂SO₃	1.5×10 ⁻²	1.0×10 ⁻⁷	-
H₃PO₄	7.5×10 ⁻³	6.2×10 ⁻⁸	4.2×10 ⁻¹³
◀			>

6.11.7 Factors Affecting Acid Strength

Key Factors:

1. **Bond Strength**: Weaker H-A bond → Stronger acid

2. **Bond Polarity**: More polar H-A bond → Stronger acid

Periodic Trends:

Within Group (bond strength dominates):

- Size increases → Bond strength decreases → Acid strength increases
- **Example**: HF < HCl < HBr < HI

Within Period (polarity dominates):

- Electronegativity increases → Polarity increases → Acid strength increases
- **Example**: $CH_4 < NH_3 < H_2O < HF$

6.11.8 Common Ion Effect

Definition:

Shift in equilibrium when substance providing common ion is added

Example: Acetic Acid + Sodium Acetate

 $CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$

Adding CH₃COONa:

- Increases [CH₃COO¯]
- Equilibrium shifts left
- [H⁺] decreases
- pH increases

Calculation:

For 0.05 M CH₃COOH + 0.05 M CH₃COONa:

 $Ka = [H^+][CH_3COO^-]/[CH_3COOH] = x(0.05)/0.05 = x$

Therefore: $[H^{+}] = Ka = 1.8 \times 10^{-5} M$

6.11.9 Hydrolysis of Salts

Types of Salts:

1. Salt of Strong Acid + Strong Base:

Example: NaCl **Hydrolysis**: None **pH**: 7 (neutral) **Reason**: Neither Na⁺ nor Cl⁻ hydrolyze

2. Salt of Weak Acid + Strong Base:

Example: CH_3COONa **Hydrolysis**: $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$ **pH**: > 7 (basic) **Reason**: Acetate ion accepts protons

3. Salt of Strong Acid + Weak Base:

Example: NH₄Cl

Hydrolysis: $NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+ pH$: < 7 (acidic) **Reason**: Ammonium ion donates protons

4. Salt of Weak Acid + Weak Base:

Example: CH_3COONH_4 **Hydrolysis**: Both ions hydrolyze **pH formula**: $pH = 7 + \frac{1}{2}(pKa - pKb)$

Interpretation:

- If pKa > pKb: pH > 7 (basic)
- If pKa < pKb: pH < 7 (acidic)
- If pKa = pKb: pH = 7 (neutral)

6.12 Buffer Solutions

Definition:

Buffer solutions resist change in pH upon dilution or addition of small amounts of acid or base

Importance:

- Body fluids (blood, urine) maintain specific pH
- Industrial processes require pH control
- Medical and cosmetic formulations

Types:

1. Acidic Buffer:

Composition: Weak acid + Salt of weak acid with strong base **Example**: CH₃COOH + CH₃COONa (pH ≈ 4.75)

2. Basic Buffer:

Composition: Weak base + Salt of weak base with strong acid

Example: $NH_3 + NH_4CI$ (pH ≈ 9.25)

6.12.1 Henderson-Hasselbalch Equation

For Acidic Buffer:

```
pH = pKa + log([A^-]/[HA])
```

or

```
pH = pKa + log([Salt]/[Acid])
```

For Basic Buffer:

```
pOH = pKb + log([BH^+]/[B])
```

or

```
pH = pKa + log([Base]/[Salt])
```

Buffer Design:

• **Equal concentrations**: pH = pKa (for acidic buffer)

• **Best buffering**: When pH ≈ pKa ± 1

• **Dilution effect**: pH remains constant (ratio unchanged)

6.13 Solubility Equilibria of Sparingly Soluble Salts

Classification by Solubility:

Category	Solubility	Examples
Soluble	> 0.1 M	CaCl ₂ , NaCl
Slightly Soluble	0.01-0.1 M	Ca(OH) ₂
Sparingly Soluble	< 0.01 M	AgCl, BaSO₄
▲	•	>

6.13.1 Solubility Product Constant (Ksp)

General Equilibrium:

$$MpXq(s) \rightleftharpoons pM^n+(aq) + qX^m-(aq)$$

Solubility Product:

$$Ksp = [M^n+]^p[X^m-]^q$$

Note: Concentration of solid is constant, incorporated into Ksp

Examples:

1. BaSO₄: BaSO₄(s) \rightleftharpoons Ba²⁺ + SO₄²⁻

$$Ksp = [Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10} (298K)$$

If molar solubility = S:

- $[Ba^{2+}] = S, [SO_4^{2-}] = S$
- Ksp = $S^2 \rightarrow S = \sqrt{Ksp} = 1.05 \times 10^{-5} M$

2. General Formula MxXy:

If molar solubility = S:

- $[M^p+] = xS, [X^q-] = yS$
- Ksp = $(xS)^x(yS)^y = x^x\cdot y^y\cdot S^x(x+y)$
- $S = (Ksp/x^x\cdot y^y)^(1/(x+y))$

Common Ksp Values (298K):

Salt	Ksp
AgCl	1.8×10 ⁻¹⁰
AgBr	5.0×10 ⁻¹³
Agl	8.3×10 ⁻¹⁷
BaSO ₄	1.1×10 ⁻¹⁰
CaF ₂	3.9×10 ⁻¹¹
PbCl ₂	1.9×10 ⁻⁴
◀	>

6.13.2 Common Ion Effect on Solubility

Principle:

Adding common ion decreases solubility of sparingly soluble salt

Example: AgCl in presence of NaCl

$$AgCl(s) \rightleftharpoons Ag^+ + Cl^-$$

Adding NaCl:

- Increases [Cl⁻]
- Equilibrium shifts left
- [Ag⁺] decreases
- Solubility decreases

Quantitative Treatment:

If solubility of AgCl in pure water = S_0 If solubility in 0.1 M NaCl = S

$$Ksp = [Ag^{+}][CI^{-}] = S(0.1 + S) \approx S(0.1)$$

 $S = Ksp/0.1 << S_0$

Applications:

- 1. **Purification**: NaCl purified by HCl gas treatment
- 2. **Gravimetric analysis**: Complete precipitation using excess precipitating agent
- 3. Qualitative analysis: Selective precipitation

pH Effect on Solubility:

For salts of weak acids, solubility increases at lower pH due to protonation of anion.

Example: $CaF_2 + H^+ \rightarrow Ca^{2+} + HF$

- Lower pH → More HF formation
- Removes F⁻ ions → Increases solubility

NEET-Specific Important Points

High-Yield Topics:

1. Equilibrium Constant Calculations:

- Kc and Kp relationships
- ICE table method
- Reaction quotient (Q) vs equilibrium constant (K)

2. Le Chatelier's Principle:

- Effect of concentration, pressure, temperature
- Industrial applications (Haber process, Contact process)

3. Acid-Base Equilibria:

- Ka, Kb, and Kw relationships
- pH calculations for weak acids/bases
- Buffer calculations using Henderson-Hasselbalch equation

4. Salt Hydrolysis:

- pH predictions based on salt type
- Hydrolysis constant calculations

5. Solubility Product:

- Ksp calculations and solubility predictions
- Common ion effect applications

Common NEET Question Patterns:

1. Numerical Problems:

- Equilibrium constant calculations
- pH of weak acid/base solutions
- Buffer pH calculations
- Solubility from Ksp

2. Conceptual Questions:

- Predicting reaction direction using Q vs K
- Effect of various factors on equilibrium
- Classification of salts and pH predictions

3. Graph Interpretation:

- Equilibrium composition vs time
- pH titration curves
- Solubility vs temperature

Memory Aids and Mnemonics

Le Chatelier's Principle:

"HEAT" - Higher Energy Always Taken

- Endothermic: Higher temperature increases K
- Exothermic: Higher temperature decreases K

Acid-Base Strength:

"Strong acid, weak conjugate base" "Strong base, weak conjugate acid"

pH Scale:

"pH + pOH = 14" (at 298K) "pKa + pKb = 14" (for conjugate pairs)

Buffer Types:

"WAR" - Weak Acid + salt of weak acid with stRong base **"WBS"** - Weak Base + Salt of weak base with strong acid

Solubility Rules:

"Like dissolves like" "Common ion decreases solubility"

Practice Questions for NEET

Multiple Choice Questions:

- 1. For the equilibrium $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$, if Kc = 0.04 at 250°C, what is Kp? a) 0.04 × RT b) 0.04/(RT) c) 0.04 d) 0.04 + RT
- 2. The pH of 0.1 M CH₃COOH solution (Ka = 1.8×10^{-5}) is approximately: a) 1 b) 2.9 c) 4.8 d) 7
- 3. Which salt undergoes anionic hydrolysis? a) NaCl b) NH₄Cl c) CH₃COONa d) KBr

Short Answer Questions:

- 1. Explain why Kp = Kc for the reaction $H_2 + I_2 \rightleftharpoons 2HI$.
- 2. Calculate the pH of a buffer containing 0.1 M CH₃COOH and 0.1 M CH₃COONa.
- 3. Why does AgCl precipitate when NaCl is added to AgNO₃ solution?

Long Answer Questions:

- 1. Derive the relationship between Kp and Kc for gaseous equilibria.
- 2. Explain buffer action with a suitable example and derive Henderson-Hasselbalch equation.
- 3. Discuss the common ion effect on solubility with quantitative treatment.

Summary Tables

Equilibrium Constants:

Туре	Expression	Units	Temperature Effect
Кс	[Products]/[Reactants]	(mol/L)^∆n	Changes with T
Кр	(P_products)/(P_reactants)	(bar)^∆n	Changes with T
Ка	[H ⁺][A ⁻]/[HA]	mol/L	Changes with T
Kb	[BH ⁺][OH ⁻]/[B]	mol/L	Changes with T
	'	!	'

Туре	Expression	Units	Temperature Effect	
Ksp	[M^n+]^x[X^m-]^y	(mol/L)^(x+y)	Changes with T	
◄	•	•	>	J

Acid-Base Classification:

Concept	Acid	Base	Limitations
Arrhenius	H⁺ producer	OH⁻ producer	Aqueous only
Brönsted-Lowry	H⁺ donor	H ⁺ acceptor	Proton transfer only
Lewis	e ⁻ pair acceptor	e ⁻ pair donor	Most general

Salt Hydrolysis Summary:

Salt Type	Example	Hydrolysis	рН	Reason
SA + SB	NaCl	None	7	No hydrolysis
WA + SB	CH₃COONa	Anionic	>7	$A^- + H_2O \rightarrow HA + OH^-$
SA + WB	NH₄CI	Cationic	<7	$BH^{+} + H_{2}O \rightarrow B + H^{+}$
WA + WB	CH₃COONH₄	Both	Depends on Ka,Kb	Both ions hydrolyze
4	1	1	1	>

EXAM SPRINT - Master Equilibrium

Key Success Strategy:

- Focus on understanding equilibrium as dynamic process
- Master ICE table method for calculations
- Practice pH calculations for all types of solutions
- Understand Le Chatelier's principle applications
- Memorize important Ka, Kb, and Ksp values

• Practice buffer and solubility problems regularly

Common Mistakes to Avoid:

- Confusing Q with K
- Forgetting to account for stoichiometry in equilibrium expressions
- Mixing up Kp and Kc relationships
- Incorrect application of common ion effect
- Wrong pH predictions for salt solutions

Final Tips:

- Always check units in calculations
- Use logarithm properties correctly in pH problems
- Remember temperature dependence of equilibrium constants
- Practice graphical questions involving equilibrium

Source: NCERT Chemistry Class 11, Chapter 6 - Comprehensive coverage for NEET preparation