Organic Chemistry - Basic Principles and Techniques

Unit 8 Notes

8.1 General Introduction

Historical Background

- **1780s**: Chemists distinguished between organic (from plants/animals) and inorganic compounds
- Berzilius: Proposed "vital force" theory for organic compound formation
- 1828: F. Wöhler synthesized urea from ammonium cyanate, disproving vital force theory

```
NH_4CNO \rightarrow NH_2CONH_2
Ammonium cyanate \rightarrow Urea
```

- Kolbe (1845): Synthesized acetic acid
- Berthelot (1856): Synthesized methane

Modern Organic Chemistry

- Based on electronic theory of covalent bonding
- Organic compounds are vital for life (DNA, proteins, blood, muscles, skin)
- Applications: clothing, fuels, polymers, dyes, medicines

8.2 Tetravalence of Carbon: Shapes of Organic Compounds

8.2.1 Carbon Hybridization States

Hybridization	Example	Geometry	Bond Angles
sp³	CH₄ (methane)	Tetrahedral	109.5°
sp ²	C₂H₄ (ethene)	Trigonal planar	120°
sp	C₂H₂ (ethyne)	Linear	180°
◀	'	•	•

Key Properties of Hybrid Orbitals

• Bond strength order: sp > sp² > sp³

• Bond length order: sp < sp² < sp³

• Electronegativity order: sp > sp² > sp³

• More s-character = shorter, stronger bonds = higher electronegativity

8.2.2 π (Pi) Bond Characteristics

• Formed by lateral overlap of p orbitals

• Requires parallel orientation of p orbitals

• **Restriction**: Rotation around C=C bond is restricted

• π electrons are easily available to attacking reagents

• π bonds are most reactive centers in molecules with multiple bonds

8.3 Structural Representations of Organic Compounds

8.3.1 Types of Structural Formulas

1. Complete Structural Formula: Shows all atoms and bonds

- 2. **Condensed Formula**: Omits some bonds, uses subscripts
 - Example: CH₃CH₃, H₂C=CH₂, HC≡CH, CH₃OH

3. Bond-line Formula:

- Carbon and hydrogen atoms not shown
- Lines in zig-zag fashion represent C-C bonds
- Terminals = methyl groups
- Junctions = carbon atoms with appropriate hydrogens

8.3.2 Three-Dimensional Representation

- **Solid wedge (△)**: Bond projecting toward observer
- **Dashed wedge (△)**: Bond projecting away from observer
- Normal line (—): Bond in plane of paper

Molecular Models

- 1. Framework model: Shows only bonds
- 2. **Ball-and-stick model**: Shows atoms (balls) and bonds (sticks)
- 3. Space-filling model: Shows relative atomic sizes based on van der Waals radii

8.4 Classification of Organic Compounds

Structural Classification

I. Acyclic (Open Chain/Aliphatic) Compounds

- Straight or branched carbon chains
- Examples: Ethane, Isobutane, Acetaldehyde, Acetic acid

II. Cyclic (Closed Chain/Ring) Compounds

A. Alicyclic Compounds

- Carbon atoms in rings (homocyclic)
- May contain heteroatoms (heterocyclic)
- Examples: Cyclohexane, Cyclohexene, Tetrahydrofuran

B. Aromatic Compounds

- Special ring compounds
- **Benzenoid**: Benzene and related compounds
- Non-benzenoid: Tropone
- Heterocyclic aromatic: Furan, Thiophene, Pyridine

8.4.1 Functional Groups

- **Definition**: Atom or group of atoms responsible for characteristic chemical properties
- Examples: -OH (hydroxyl), -CHO (aldehyde), -COOH (carboxylic acid)

8.4.2 Homologous Series

- Group of compounds with same functional group
- Successive members differ by -CH₂ unit
- Can be represented by general molecular formula
- Examples: Alkanes, alkenes, alkynes, alcohols, aldehydes, ketones

8.5 Nomenclature of Organic Compounds

8.5.1 IUPAC System

- International Union of Pure and Applied Chemistry
- Systematic naming correlates structure with name
- Names are derivable from structure and vice versa

8.5.2 IUPAC Nomenclature of Alkanes

Straight Chain Alkanes

Carbon Atoms	Name	Formula
1	Methane	CH₄
2	Ethane	C₂H ₆
3	Propane	C₃H ₈
4	Butane	C ₄ H ₁₀
5	Pentane	C ₅ H ₁₂
•	•	•

Alkyl Groups

Group	Name	Abbreviation
-CH₃	Methyl	Me
-C₂H₅	Ethyl	Et
-C ₃ H ₇	Propyl	Pr
-C ₄ H ₉	Butyl	Bu
▲	'	>

Rules for Branched Chain Alkanes

- 1. **Identify longest carbon chain** (parent chain)
- 2. **Number the chain** to give substituents lowest possible numbers
- 3. **Name substituents** and indicate positions with numbers

- 4. List substituents alphabetically
- 5. **Use prefixes** for identical substituents: di-, tri-, tetra-, penta-, hexa-

8.5.3 Functional Group Nomenclature

Priority Order of Functional Groups (Highest to Lowest)

$$-COOH > -SO_3H > -COOR > -COCI > -CONH_2 > -CN > -CHO > > C=O > -OH > -NH_2 > > C=C < > -C=C-$$

Naming Rules

- 1. Identify functional group (determines suffix)
- 2. Find longest chain containing functional group
- 3. Number to give functional group lowest number
- 4. Name subordinate groups as prefixes

8.5.4 Substituted Benzene Nomenclature

- Monosubstituted: Substituent + benzene
- **Disubstituted**: Use position numbers or ortho (1,2), meta (1,3), para (1,4)
- **Phenyl group**: C₆H₅- when benzene is substituent

8.6 Isomerism

8.6.1 Structural Isomerism

Definition: Same molecular formula, different structures

Types of Structural Isomerism

- 1. **Chain Isomerism**: Different carbon skeletons
 - Example: C₅H₁₂ → Pentane, Isopentane, Neopentane
- 2. **Position Isomerism**: Different positions of functional groups
 - Example: C₃H₈O → Propan-1-ol, Propan-2-ol
- 3. **Functional Group Isomerism**: Different functional groups
 - Example: C₃H₆O → Propanone (ketone), Propanal (aldehyde)
- 4. **Metamerism**: Different alkyl chains around functional group
 - Example: C₄H₁₀O → Methoxypropane, Ethoxyethane

8.6.2 Stereoisomerism

Definition: Same constitution, different spatial arrangements

- Geometrical isomerism
- Optical isomerism

8.7 Fundamental Concepts in Organic Reaction Mechanism

8.7.1 Fission of Covalent Bonds

Heterolytic Cleavage

- Bond breaks unequally; electron pair stays with one fragment
- Produces **carbocation** (C⁺) and anion
- Carbocation stability order: Tertiary > Secondary > Primary > Methyl
- Leads to ionic/polar reactions

Homolytic Cleavage

- Bond breaks equally; one electron to each fragment
- Produces free radicals
- Free radical stability order: Tertiary > Secondary > Primary > Methyl
- Leads to free radical reactions

8.7.2 Nucleophiles and Electrophiles

Nucleophiles (Nu:) - Electron donors

- **Definition**: Nucleus-seeking, brings electron pair
- **Examples**: HO⁻, CN⁻, NH₃, H₂O, carbanions
- Attack electrophilic centers

Electrophiles (E⁺) - Electron acceptors

- **Definition**: Electron-seeking, takes electron pair
- **Examples**: H⁺, carbocations, BF₃, AlCl₃
- Attack nucleophilic centers

8.7.3 Electron Movement Notation

- **Curved arrows** show electron pair movement
- Half-headed arrows show single electron movement
- Arrow starts from electron source, points to electron sink

8.7.4 Electronic Effects

8.7.5 Inductive Effect

- **Definition**: Polarization of σ -bond due to adjacent polar bond
- Transmitted through chain, decreases with distance

- Electron-withdrawing groups: Halogens, -NO₂, -CN, -COOH
- Electron-donating groups: Alkyl groups (-CH₃, -C₂H₅)

8.7.6 Resonance Effect

- **Definition**: Electron delocalization in conjugated systems
- Multiple valid Lewis structures (canonical forms)
- Actual structure is hybrid of resonance forms
- **Resonance energy**: Difference between actual and most stable canonical form

Rules for Resonance Structures

- 1. Same nuclear positions
- 2. Same number of unpaired electrons
- 3. More covalent bonds = more stable
- 4. All atoms with complete octets = more stable
- 5. Less charge separation = more stable
- 6. Negative charge on more electronegative atom = more stable

8.7.7 Resonance Effect Types

- +R effect: Electron donation into conjugated system
 - Groups: -OH, -OR, -NH₂, -NR₂, halogens
- -R effect: Electron withdrawal from conjugated system
 - Groups: -COOH, -CHO, >C=O, -CN, -NO₂

8.7.8 Electromeric Effect

• **Temporary effect** in presence of attacking reagent

- Complete transfer of π -electrons to one atom
- **+E effect**: π -electrons move to atom where reagent attaches
- **-E effect**: π-electrons move away from attacking site

8.7.9 Hyperconjugation

- **Definition**: Delocalization of σ -electrons into adjacent p-orbital or π -system
- Also called: No-bond resonance
- Stabilizes carbocations, free radicals, alkenes
- Greater number of alkyl groups = greater hyperconjugation = greater stability

8.8 Methods of Purification

8.8.1 Sublimation

- Direct solid → vapor transition
- Separates sublimable compounds from non-sublimable impurities

8.8.2 Crystallization

- Based on differential solubility in solvents
- Compound sparingly soluble at room temperature, appreciably soluble when hot
- **Process**: Dissolve in hot solvent → cool → pure crystals separate
- Activated charcoal removes colored impurities

8.8.3 Distillation

Simple Distillation

• Separates volatile liquids from non-volatile impurities

Separates liquids with large boiling point differences (>25°C)

Fractional Distillation

- For liquids with small boiling point differences
- Uses fractionating column with multiple theoretical plates
- Applications: Petroleum refining

Distillation Under Reduced Pressure

- For high boiling point liquids or heat-sensitive compounds
- Liquid boils when vapor pressure = external pressure
- Lower pressure = lower boiling temperature

Steam Distillation

- For steam-volatile, water-immiscible compounds
- **Principle**: $p_1 + p_2 = atmospheric pressure$
- Compound vaporizes below its normal boiling point

8.8.4 Differential Extraction

- Based on differential solubility in immiscible solvents
- Uses separatory funnel
- Continuous extraction for less soluble compounds

8.8.5 Chromatography

- **Etymology**: Greek "chroma" (color)
- Separates mixtures using stationary and mobile phases

Types Based on Principle

1. Adsorption Chromatography

- Based on differential adsorption
- **Column chromatography**: Glass tube with adsorbent
- Thin Layer Chromatography (TLC): Thin adsorbent layer on glass plate
- **Rf value** = Distance moved by substance / Distance moved by solvent

2. Partition Chromatography

- Based on differential partitioning between phases
- Paper chromatography: Water in paper as stationary phase

8.9 Qualitative Analysis

8.9.1 Detection of Carbon and Hydrogen

- Heat compound with CuO
- **Carbon**: C + 2CuO → 2Cu + CO₂ (test with lime water)
- **Hydrogen**: 2H + CuO → Cu + H₂O (test with anhydrous CuSO₄)

8.9.2 Lassaigne's Test

- Principle: Convert covalent elements to ionic form by fusion with Na
- Reactions:
 - Na + C + N \rightarrow NaCN
 - $2Na + S \rightarrow Na_2S$
 - Na + X → NaX (X = Cl, Br, I)

Tests on Sodium Fusion Extract

A. Test for Nitrogen

- Boil extract with FeSO₄, then acidify with H₂SO₄
- **Positive**: Prussian blue color (Fe₄[Fe(CN)₆]₃)

B. Test for Sulphur

- 1. Acidify with acetic acid + lead acetate → Black PbS precipitate
- 2. Add sodium nitroprusside → Violet color

C. Test for Halogens

- Acidify with HNO₃ + AgNO₃
- **CI**⁻: White AgCl (soluble in NH₄OH)
- **Br**⁻: Yellowish AgBr (sparingly soluble in NH₄OH)
- I⁻: Yellow AgI (insoluble in NH₄OH)

D. Test for Phosphorus

- Heat with Na₂O₂, treat with HNO₃, add (NH₄)₂MoO₄
- **Positive**: Yellow precipitate of ammonium phosphomolybdate

8.10 Quantitative Analysis

8.10.1 Carbon and Hydrogen Estimation

- Combust compound with excess O₂ and CuO
- Carbon: Absorb CO₂ in KOH solution, weigh increase
- **Hydrogen**: Absorb H₂O in anhydrous CaCl₂, weigh increase

Calculations:

- % Carbon = $(12/44) \times (mass of CO_2/mass of compound) \times 100$
- % Hydrogen = $(2/18) \times (\text{mass of H}_2\text{O/mass of compound}) \times 100$

8.10.2 Nitrogen Estimation

Dumas Method

- Heat compound with CuO in CO₂ atmosphere
- Collect N₂ gas, measure volume at STP
- **Calculation**: % N = $(28 \times V \times 100)/(22400 \times m)$

Kjeldahl Method

- Heat compound with conc. H₂SO₄ → (NH₄)₂SO₄
- Add NaOH → NH₃ gas
- Absorb NH₃ in standard H₂SO₄
- Back-titrate with standard NaOH
- **Limitation**: Not for nitro, azo, or ring nitrogen compounds

8.10.3 Halogen Estimation - Carius Method

- Heat compound with fuming HNO₃ + AgNO₃ in sealed tube
- Weigh AgX precipitate formed
- **Calculation**: % X = (Atomic mass of X/Molecular mass of AgX) × (mass of AgX/mass of compound) × 100

8.10.4 Sulphur Estimation

Heat with HNO₃ → H₂SO₄

- Precipitate as BaSO₄ with BaCl₂
- **Calculation**: % S = $(32/233) \times (mass of BaSO_4/mass of compound) \times 100$

8.10.5 Phosphorus Estimation

- Oxidize to H₃PO₄ with HNO₃
- Precipitate as (NH₄)₃PO₄·12MoO₃ or Mg₂P₂O₇
- Calculate percentage from precipitate mass

8.10.6 Oxygen Estimation

- Usually calculated by difference: % O = 100 (sum of % of all other elements)
- **Direct method**: Pass over red-hot coke \rightarrow CO, then over $I_2O_5 \rightarrow CO_2 + I_2$

Important Formulas and Constants

Bond Parameters

- C-C single bond: 154 pm
- C=C double bond: 134 pm
- C≡C triple bond: 120 pm
- Benzene C-C bond: 139 pm (intermediate)

Molar Volumes

- 1 mole gas at STP = 22.4 L = 22,400 mL
- Molar mass $N_2 = 28$ g/mol
- Molar mass CO₂ = 44 g/mol
- Molar mass H₂O = 18 g/mol

Key Molecular Masses

- AgCl = 143.5 g/mol
- AgBr = 187.8 g/mol
- AgI = 234.8 g/mol
- BaSO₄ = 233 g/mol
- $(NH_4)_3PO_4\cdot 12MoO_3 = 1877 \text{ g/mol}$
- $Mg_2P_2O_7 = 222 \text{ g/mol}$