Chapter 14: Waves - NCERT Exercise Solutions

Physics Class 11

ExamSprint Watermark

14.1 String Wave Speed

Given: String mass = 2.50 kg, tension = 200 N, length = 20.0 m

Solution:

```
Linear mass density: \mu = m/L = 2.50/20.0 = 0.125 kg/m Wave speed: v = \sqrt{(T/\mu)} = \sqrt{(200/0.125)} = \sqrt{1600} = 40 m/s Time = distance/speed = 20.0/40 = 0.5 s
```

Answer: Time = 0.5 s

14.2 Stone Drop and Sound Travel

Given: Tower height = 300 m, sound speed = 340 m/s, $g = 9.8 \text{ m/s}^2$

Solution:

```
Time for stone to fall: t_1 = \sqrt{(2h/g)} = \sqrt{(2\times300/9.8)} = 7.82 \text{ s}
Time for sound to travel up: t_2 = h/v = 300/340 = 0.88 \text{ s}
Total time = t_1 + t_2 = 7.82 + 0.88 = 8.7 \text{ s}
```

Answer: Splash heard after 8.7 s

14.3 Steel Wire Tension for Sound Speed

Given: Wire length = 12.0 m, mass = 2.10 kg, desired speed = 343 m/s

Solution:

```
Linear mass density: \mu = m/L = 2.10/12.0 = 0.175 \text{ kg/m}
From v = \sqrt{(T/\mu)}: T = \mu v^2 = 0.175 \times (343)^2 = 20,600 \text{ N}
```

Answer: Required tension = 20.6 kN

14.4 Sound Speed in Air - Conceptual

Using $v = \sqrt{(\gamma P/\rho)}$:

- (a) Independence of pressure: At constant temperature, $P \propto \rho$ (ideal gas law), so P/ρ remains constant
- **(b) Increases with temperature:** At constant pressure, ρ decreases with T, so $v \propto \sqrt{T}$
- **(c) Increases with humidity:** Water vapor is less dense than dry air, reducing overall density and increasing speed

14.5 Traveling Wave Functions

For $y = f(x \pm vt)$ to represent traveling wave:

(a) $(x - vt)^2$: YES - Function of (x - vt), represents wave traveling in +x direction

- (b) $log[(x + vt)/x_0]$: YES Function of (x + vt), represents wave traveling in -x direction
- (c) 1/(x + vt): YES Function of (x + vt), represents wave traveling in -x direction

All three can represent traveling waves

14.6 Bat Ultrasonic Wave Reflection/Transmission

Given: f = 1000 kHz, v_air = 340 m/s, v_water = 1486 m/s

Solution:

Wavelength in air: $\lambda_{air} = v_{air}/f = 340/(1000 \times 10^{3}) = 3.4 \times 10^{-4} \text{ m}$

- (a) Reflected sound: Same medium, so $\lambda = 3.4 \times 10^{-4} \, \text{m} = 0.34 \, \text{mm}$
- (b) Transmitted sound: $\lambda_{\text{water}} = v_{\text{water}}/f = 1486/(1000 \times 10^{3}) = 1.486 \times 10^{-3} \text{ m} = 1.49 \text{ mm}$

14.7 Medical Ultrasound Scanner

Given: f = 4.2 MHz, v_tissue = 1.7 km/s = 1700 m/s

Solution:

Wavelength: $\lambda = v/f = 1700/(4.2 \times 10^6) = 4.05 \times 10^{-4} \text{ m} = 0.405 \text{ mm}$

Answer: $\lambda = 0.41$ mm in tissue

14.8 Transverse Wave Analysis

Given: $y(x,t) = 3.0 \sin(36t + 0.018x + \pi/4) \text{ cm}$

Solution: Comparing with $y = a \sin(\omega t + kx + \phi)$:

(a) **Traveling wave:** YES, moving in -x direction (ω and k have same sign)

Speed: $v = \omega/k = 36/0.018 = 2000 \text{ cm/s} = 20 \text{ m/s}$ (leftward)

- (b) Amplitude = 3.0 cm, Frequency = $\omega/2\pi$ = 36/2 π = 5.73 Hz
- (c) Initial phase at origin = $\pi/4$
- (d) Wavelength: $\lambda = 2\pi/k = 2\pi/0.018 = 349 \text{ cm}$

14.9 Wave Motion Comparison

For wave at different positions (x = 0, 2, 4 cm):

Shapes: All sinusoidal with same frequency and amplitude

Differences: Only **phase** differs between points - amplitude and frequency are identical for all positions in a traveling wave.

14.10 Phase Difference Calculation

Given: $y(x,t) = 2.0 \cos 2\pi (10t - 0.0080x + 0.35)$

Solution: Phase = $2\pi(10t - 0.0080x + 0.35)$ Phase difference = $2\pi \times 0.0080 \times \Delta x$

(a) $\Delta x = 4$ m: $\Delta \phi = 2\pi \times 0.0080 \times 4 = 0.201$ rad

(b) $\Delta x = 0.5$ m: $\Delta \phi = 2\pi \times 0.0080 \times 0.5 = 0.0251$ rad

(c) $\lambda = 2\pi/k = 125 \text{ m}$, so $\lambda/2 = 62.5 \text{ m}$: $\Delta \phi = \pi \text{ rad}$

(d) $3\lambda/4 = 93.75$ m: $\Delta \phi = 3\pi/2$ rad

14.11 Standing Wave Analysis

Given: $y(x,t) = 0.06 \sin(2\pi x/3) \cos(120\pi t)$

Solution: (a) **Standing wave** - variables x and t appear separately

(b) Superposition interpretation:

Wavelength: $\lambda = 2\pi/k = 2\pi/(2\pi/3) = 3$ m Frequency: $f = \omega/2\pi = 120\pi/2\pi = 60$ Hz Speed: $v = f\lambda = 60 \times 3 = 180$ m/s

(c) String tension:

 $\mu = m/L = 0.03/1.5 = 0.02 \text{ kg/m}$ $T = \mu v^2 = 0.02 \times (180)^2 = 648 \text{ N}$

14.12 Standing Wave Properties

- (a) Frequency: YES All points oscillate with same frequency
- **(b) Phase:** NO Points between nodes have same phase, but different from points in adjacent segments
- (c) Amplitude: NO Amplitude varies as |2a sin(kx)| depending on position

Amplitude at x = 0.375 m:

 $A = 0.06|\sin(2\pi \times 0.375/3)| = 0.06|\sin(\pi/4)| = 0.06 \times 0.707 = 0.042 \text{ m}$

14.13 Wave Type Classification

- (a) $y = 2 \cos(3x) \sin(10t)$: STATIONARY wave (x and t separate)
- **(b)** y = 2(x vt): TRAVELING wave (function of x vt)
- (c) $y = 3 \sin(5x 0.5t) + 4 \cos(5x 0.5t)$: TRAVELING wave (both terms have same argument)
- (d) $y = \cos x \sin t + \cos 2x \sin 2t$: NONE Two different standing waves superposed

14.14 String Fundamental Frequency

Given: f = 45 Hz, $m = 3.5 \times 10^{-2} \text{ kg}$, $\mu = 4.0 \times 10^{-2} \text{ kg/m}$

Solution:

Length: $L = m/\mu = 0.035/0.04 = 0.875 m$

- (a) Wave speed: $v = f\lambda = f(2L) = 45 \times 2 \times 0.875 = 78.75 \text{ m/s}$
- (b) Tension: $T = \mu v^2 = 0.04 \times (78.75)^2 = 248 \text{ N}$

14.15 Air Column Resonance

Given: f = 340 Hz, resonance at L = 25.5 cm and 79.3 cm

Solution:

For pipe closed at one end: $L = (2n+1)\lambda/4$

Difference: $79.3 - 25.5 = 53.8 \text{ cm} = \lambda/2$

Therefore: $\lambda = 107.6$ cm

Speed: $v = f\lambda = 340 \times 1.076 = 366 \text{ m/s}$

Answer: Sound speed = 366 m/s

14.16 Steel Rod Longitudinal Vibration

Given: L = 100 cm, clamped at middle, f = 2.53 kHz

Solution:

For rod clamped at center, $L = \lambda/2$

 $\lambda = 2L = 2.0 \text{ m}$

Speed: $v = f\lambda = 2530 \times 2.0 = 5060 \text{ m/s}$

Answer: Sound speed in steel = 5.06 km/s

14.17 Pipe Resonance Analysis

Given: L = 20 cm, f = 430 Hz, v = 340 m/s

Solution:

```
Wavelength: \lambda = v/f = 340/430 = 0.791 \text{ m} = 79.1 \text{ cm}

Closed pipe: L = (2n+1)\lambda/4
20 = (2n+1) \times 79.1/4
n = 0.01 (not integer - no resonance)

Open pipe: L = n\lambda/2
20 = n \times 79.1/2
n = 0.51 (not integer - no resonance)
```

Answer: No resonance in either case

14.18 Beat Frequency Analysis

Given: Beat frequency = 6 Hz, tension in A reduced, beats become 3 Hz, f_A = 324 Hz

Solution:

```
Initially: |f_A - f_B| = 6 Hz

So f_B = 324 \pm 6 = 330 Hz or 318 Hz

Reducing tension decreases frequency of A.

If f_B = 330 Hz: beat frequency would increase

If f_B = 318 Hz: beat frequency would decrease to 3 Hz \checkmark
```

14.19 Conceptual Explanations

- **(a) Displacement node = pressure antinode:** In sound waves, where particles don't move (displacement node), pressure variation is maximum (pressure antinode) and vice versa.
- **(b) Bat echolocation:** Bats emit ultrasound and analyze reflected waves to determine distance, direction, size and nature of objects biological sonar.
- **(c) Same frequency, different sounds:** Instruments have different harmonic content (overtones) giving characteristic timbres despite same fundamental frequency.
- **(d) Wave types in different media:** Solids can support both shear (transverse) and compression (longitudinal) waves. Fluids cannot sustain shear stress, only longitudinal waves possible.
- **(e) Pulse distortion:** In dispersive media, different frequencies travel at different speeds, causing pulse shape to change during propagation.

Key Formulas Reference

Wave Properties

- Wave speed: $v = f\lambda = \omega/k$
- String waves: $v = \sqrt{T/\mu}$
- Sound waves: $v = \sqrt{(\gamma P/\rho)} = \sqrt{(B/\rho)}$

Wave Equations

- **General:** $y(x,t) = a \sin(kx \omega t + \phi)$
- Standing wave: $y(x,t) = 2a \sin(kx) \cos(\omega t)$

Resonance

- String (both ends fixed): f_n = nv/(2L)
- Pipe (one end closed): $f_n = (2n+1)v/(4L)$
- Pipe (both ends open): f_n = nv/(2L)

Beats

• **Beat frequency:** f_beat = |f₁ - f₂|

ExamSprint Watermark