Chapter 7: Gravitation - Detailed Notes

ExamSprint Watermark

7.1 INTRODUCTION

Historical Background:

- **Galileo (1564-1642)**: First to recognize that all bodies fall toward Earth with constant acceleration, regardless of mass
- Conducted experiments with inclined planes to measure gravitational acceleration
- Value obtained was close to modern accurate measurements

Early Models of Planetary Motion:

1. Geocentric Model (Ptolemy - 2000 years ago)

- Earth at center of universe
- All celestial objects (stars, sun, planets) revolve around Earth
- Only circular motion considered possible for celestial objects
- Complex system of circles within circles to explain planetary motion

2. Heliocentric Model Development

- Aryabhatta (5th century AD): Early mention of sun-centered model in Indian astronomy
- Nicolas Copernicus (1473-1543): Proposed definitive heliocentric model
- Planets move in circles around fixed central sun
- Model was opposed by church; Galileo faced prosecution for supporting it

3. Observational Revolution

- Tycho Brahe (1546-1601): Compiled precise naked-eye observations of planetary positions
- Johannes Kepler (1571-1640): Analyzed Brahe's data to derive three laws of planetary motion
- Kepler's laws provided foundation for Newton's universal gravitation theory

7.2 KEPLER'S LAWS

Law 1: Law of Orbits

All planets move in elliptical orbits with the Sun at one of the foci

Ellipse Properties:

- Foci: Two fixed points F₁ and F₂
- **Definition**: For any point on ellipse, sum of distances from both foci is constant
- **Semi-major axis**: Half the distance between farthest points (PO = AO)
- **Special case**: Circle (when both foci merge into one point)

Construction Method:

- 1. Fix string ends at two points (foci)
- 2. Keep string taut with pencil
- 3. Draw curve by moving pencil
- 4. Result: elliptical orbit

Planetary Terms:

- **Perihelion (P)**: Closest point to Sun
- **Aphelion (A)**: Farthest point from Sun

Law 2: Law of Areas

The radius vector from Sun to planet sweeps equal areas in equal time intervals

Mathematical Expression:

 $\Delta A/\Delta t = constant$

Physical Interpretation:

- Planets move faster when closer to Sun (at perihelion)
- Planets move slower when farther from Sun (at aphelion)
- Consequence of angular momentum conservation for central forces

Derivation from Angular Momentum:

$$\begin{split} \Delta A &= 1/_2 (r\square \times v\square \Delta t) \\ \Delta A/\Delta t &= 1/_2 (r\square \times p\square)/m = L/(2m) \end{split}$$

Since L is constant for central force, $\Delta A/\Delta t$ is constant

Law 3: Law of Periods

The square of orbital period is proportional to cube of semi-major axis

Mathematical Form:

 $T^2 \propto a^3$

Where T = period, a = semi-major axis

Verification Data:

Planet	Semi-major axis (10 ¹⁰ m)	Period (years)	T ² /a ³ (10 ⁻³⁴ y ² m ⁻³)
Mercury	5.79	0.24	2.95
Venus	10.8	0.615	3.00
Earth	15.0	1	2.96
Mars	22.8	1.88	2.98
◆			

Key Insight: The ratio T^2/a^3 is approximately constant for all planets

7.3 UNIVERSAL LAW OF GRAVITATION

Newton's Reasoning:

- Moon's orbital motion requires centripetal acceleration
- Centripetal acceleration: $a_m = v^2/R_m = 4\pi^2R_m/T^2$
- With T \approx 27.3 days, R_m \approx 3.84 \times 10⁸ m
- Calculated a_m much smaller than surface gravity g
- Concluded gravitational force decreases with distance

Distance Dependence Analysis:

If gravitational force $\propto 1/r^2$, then:

$$a_m/g = (R_E/R_m)^2 \approx 1/3600$$

This matches observed ratio, confirming inverse square law

Newton's Universal Law of Gravitation:

Statement:

Every body in the universe attracts every other body with force directly proportional to product of their masses and inversely proportional to square of distance between them

Mathematical Form:

```
F = Gm_1m_2/r^2
```

Vector Form:

```
F\square_{12} = -Gm_1m_2\hat{r}_{12}/r^2
F\square_{12} = -Gm_1m_2r\square_{12}/r^3
```

Where:

- G = Universal gravitational constant
- \hat{r}_{12} = unit vector from m_1 to m_2
- Force is attractive (along -r̂)

Superposition Principle:

For multiple masses, total force on m₁:

```
F\square\_total = \Sigma F\square_i = \Sigma(Gm_1m_i\hat{r}_i/r_i^2)
```

Extended Objects:

For extended objects (not point masses):

1. Hollow spherical shell + external point: Force acts as if all shell mass concentrated at center

2. Hollow spherical shell + internal point: Net gravitational force is zero

Physical reasoning: Various shell regions exert forces in different directions that cancel (internal) or combine along radial direction (external)

7.4 THE GRAVITATIONAL CONSTANT

Cavendish Experiment (1798):

Apparatus:

- Light rod with small lead spheres at ends
- Rod suspended by fine wire (torsion balance)
- Large lead spheres brought near small ones on opposite sides
- System measures gravitational attraction between spheres

Working Principle:

- 1. Gravitational force between spheres creates torque
- 2. Wire twists until restoring torque balances gravitational torque
- 3. Angle of twist θ measured
- 4. Restoring torque: $\tau = c\theta$ (c = torsional constant)

Force Calculation:

 $F = GMm/d^2$

Where M, m = masses of spheres, d = center-to-center distance

Equilibrium Condition:

$$GLMm/d^2 = c\theta/L$$

Solving for G:

$$G = c\theta d^2/(MLm)$$

Modern Value:

$$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$$

Historical Significance:

Cavendish's experiment called "weighing the Earth" because it enabled calculation of Earth's mass using g and RE

7.5 ACCELERATION DUE TO GRAVITY OF EARTH

Modeling Earth as Concentric Shells:

For Point Outside Earth:

- Point lies outside all spherical shells
- Each shell acts as if mass concentrated at center
- Total effect: entire Earth mass acts from center
- Force: $F = GM_e m/r^2$

For Point Inside Earth:

Consider point at distance r from center:

- Shells with radius > r: contribute zero force (point inside shell)
- Shells with radius ≤ r: act as if mass concentrated at center
- Only inner sphere of radius r contributes to force

Mass Relationships:

Assuming uniform density ρ:

$$M_e = (4/3)\pi R_e^3 \rho$$

 $Mr = (4/3)\pi r^3 \rho$

Therefore:

$$Mr/M_e = r^3/R_e^3$$

Force Inside Earth:

$$F(r) = GMrm/r^2 = GM_emr/R_e^3$$

Acceleration Due to Gravity:

At Earth's Surface:

$$g = GM_e/R_e^2$$

Inside Earth (at distance r from center):

$$g(r) = GM_e r/R_e^3 = g(r/R_e)$$

7.6 ACCELERATION DUE TO GRAVITY ABOVE AND BELOW SURFACE

Above Earth's Surface:

At Height h:

$$g(h) = GM_e/(R_e + h)^2$$

For Small Heights (h << R_e):

Using binomial approximation:

$$g(h) \approx g(1 - 2h/R_e)$$

Interpretation: Gravity decreases by factor (1 - 2h/R_e) for small heights

General Form:

$$g(h) = g/(1 + h/R_e)^2$$

Below Earth's Surface:

At Depth d:

Distance from center = R_e - d

Only inner sphere of radius (R_e - d) contributes

Mass of Inner Sphere:

$$Ms = M_e((R_e - d)/R_e)^3$$

Gravitational Force:

$$F(d) = GMsm/(R_e - d)^2$$

Simplification:

$$g(d) = GM_e(R_e - d)/R_e^3 = g(1 - d/R_e)$$

Summary of Variations:

- Above surface: g decreases as $1/(1 + h/R_e)^2$
- Below surface: g decreases linearly as (1 d/R_e)
- Maximum g: occurs at Earth's surface
- **At center**: q = 0

7.7 GRAVITATIONAL POTENTIAL ENERGY

Conservative Nature of Gravity:

- Work done by gravitational force is path-independent
- Potential energy function can be defined
- Energy conservation applies

Near Earth's Surface:

For small heights (h << R_e), gravitational force \approx constant = mg

Work Done:

$$W_{12} = mg(h_2 - h_1)$$

Potential Energy:

$$U(h) = mgh + U_0$$

Where U_0 = constant (potential energy at reference level)

For Arbitrary Distances from Earth:

Gravitational Force:

$$F = GM_e m/r^2$$

Work Done (from r_1 to r_2):

$$W_{12} = \int [r_1 \text{ to } r_2] \text{ F dr} = \int [r_1 \text{ to } r_2] \text{ (GM}_e \text{m/r}^2) \text{ dr}$$

$$W_{12} = \text{GM}_e \text{m} (1/r_1 - 1/r_2)$$

Potential Energy:

$$U(r) = -GM_em/r + U_1$$

Where U_1 = constant

Standard Convention:

Setting $U(r \rightarrow \infty) = 0$:

$$U(r) = -GM_em/r$$

Physical meaning: Potential energy is negative, representing bound state

General Two-Body System:

$$U = -Gm_1m_2/r$$

System of Multiple Particles:

Total potential energy = sum over all pairs:

$$U_{total} = \Sigma_{i} <_{j} (-Gm_{i}m_{j}/r_{ij})$$

7.8 ESCAPE SPEED

Problem Setup:

What minimum initial speed allows object to reach infinity?

Energy Conservation Approach:

Initial Energy (at surface):

$$E_i = \frac{1}{2}mv_i^2 - GM_em/R_e$$

Final Energy (at infinity):

$$E\infty = \frac{1}{2}mv\infty^2 + 0$$

Conservation Condition:

 $1/_{2}mv_{i}^{2} - GM_{e}m/R_{e} = 1/_{2}mv\infty^{2}$

Minimum Escape Speed:

For minimum v_i , set v = 0:

$$1/_2$$
m $v_i^2 = GM_e$ m/ R_e
 $v_e = \sqrt{(2GM_e/R_e)}$

Using Surface Gravity:

Since $g = GM_e/R_e^2$:

$$v_e = \sqrt{(2gR_e)}$$

Numerical Value:

With g $\approx 9.8 \text{ m/s}^2$, $R_e \approx 6.4 \times 10^6 \text{ m}$:

$$v_e \approx 11.2 \text{ km/s}$$

From Height h:

$$v_e(h) = \sqrt{(2GM_e/(R_e + h))}$$

Applications:

Moon's Escape Speed:

```
v_{moon} = \sqrt{(2GM_{moon}/R_{moon})} \approx 2.3 \text{ km/s}
```

Much smaller than Earth's escape speed

Atmospheric Retention:

- Gas molecules with speeds > escape speed can leave atmosphere
- Moon has no atmosphere due to low escape speed
- Lighter molecules (H₂, He) escape more easily from Earth

7.9 EARTH SATELLITES

Satellite Motion:

Earth satellites follow same laws as planetary motion (Kepler's laws apply)

Circular Orbits:

Forces:

- Centripetal force needed: $(F_c = mv^2/(R_e + h))$
- Gravitational force provided: $(F_g = GM_em/(R_e + h)^2)$

Equilibrium Condition:

$$mv^2/(R_e + h) = GM_e m/(R_e + h)^2$$

Orbital Speed:

$$v = \sqrt{(GM_e/(R_e + h))}$$

Key Point: Speed decreases with increasing orbital radius

Speed at Surface (h = 0):

$$v_0 = \sqrt{(GM_e/R_e)} = \sqrt{(gR_e)} \approx 7.9 \text{ km/s}$$

Orbital Period:

Time for One Revolution:

$$T = 2\pi (R_e + h)/v = 2\pi \sqrt{((R_e + h)^3/GM_e)}$$

Kepler's Third Law:

$$T^2 = (4\pi^2/GM_e)(R_e + h)^3 = K(R_e + h)^3$$

Where $K = 4\pi^2/GM_e$

Low Earth Orbit:

For $h << R_e$:

$$T_0 = 2\pi\sqrt{(R_e^3/GM_e)} = 2\pi\sqrt{(R_e/g)}$$

Numerical Value:

 $T_0 \approx 85 \text{ minutes}$

Moon as Earth Satellite:

- Orbital period ≈ 27.3 days
- Nearly circular orbit
- Rotational period ≈ orbital period (synchronous rotation)

Artificial Satellites:

Since 1957, used for:

- Telecommunications
- Weather monitoring
- Navigation (GPS)
- Scientific research
- Earth observation

7.10 ENERGY OF AN ORBITING SATELLITE

Circular Orbit Energy Analysis:

Kinetic Energy:

$$K = \frac{1}{2}mv^2 = \frac{1}{2}m(GM_e/(R_e + h)) = GM_em/2(R_e + h)$$

Potential Energy:

$$U = -GM_e m/(R_e + h)$$

Total Energy:

```
E = K + U = GM_e m/2(R_e + h) - GM_e m/(R_e + h)

E = -GM_e m/2(R_e + h)
```

Key Relationships:

- Total energy is negative (bound system)
- |U| = 2|K| (virial theorem for inverse-square force)
- **E** = -**K** (total energy equals negative kinetic energy)

Energy Significance:

Negative Total Energy:

- Indicates bound orbit (satellite cannot escape)
- Energy must be supplied to increase orbital radius
- Energy required for escape = |E|

Energy Changes:

- **To increase orbit**: Must supply energy
- Orbital decay: Energy lost (due to atmospheric drag, etc.)

Elliptical Orbits:

- Kinetic and potential energies vary with position
- Total energy remains constant (conservative system)
- Total energy still negative
- E = -GM_em/2a (where a = semi-major axis)

Transfer Orbits:

Energy required to change from orbit 1 to orbit 2:

$$\Delta E = E_2 - E_1 = GM_e m/2(1/r_1 - 1/r_2)$$

IMPORTANT FORMULAS SUMMARY

Universal Gravitation:

- Force: $F = Gm_1m_2/r^2$
- Potential Energy: (U = -Gm₁m₂/r)
- **G**: $(6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$

Earth's Gravity:

- Surface: $g = GM_e/R_e^2$
- Height h: $g(h) \approx g(1 2h/R_e)$
- **Depth d**: $g(d) = g(1 d/R_e)$

Orbital Motion:

- Speed: $v = \sqrt{(GM_e/r)}$
- **Period**: $T = 2\pi\sqrt{(r^3/GM_e)}$
- **Kepler's 3rd**: $T^2 = (4\pi^2/GM_e)r^3$

Energy:

- Escape speed: $(v_e = \sqrt{(2GM_e/R_e)})$
- Orbital energy: E = -GM_em/2r

- Kinetic energy: (K = GM_em/2r)
- Potential energy: U = -GM_em/r

ExamSprint Watermark