Chapter 10: Thermal Properties of Matter

Comprehensive Study Notes

Class 11 Physics - NCERT Based

EXAM SPRINT - Complete Coverage for JEE and NEET Examinations

10.1 INTRODUCTION

What is Heat and Temperature?

Definition:

- **Temperature**: Measure of 'hotness' of a body relative indication of thermal state
- **Heat**: Form of energy transferred between systems due to temperature difference

Key Characteristics:

- Temperature is relative (like tall/short)
- Heat flows from higher to lower temperature
- Both bodies reach thermal equilibrium eventually
- Heat transfer continues until temperature difference vanishes

Units:

- Heat: Joule (J) SI unit
- Temperature: Kelvin (K) SI unit, Celsius (°C) commonly used

Physical Understanding:

• Touch sensation unreliable for scientific measurement

- Hot utensil = high temperature
- Ice cube = low temperature
- Temperature difference drives heat transfer

10.2 TEMPERATURE AND HEAT

Temperature Fundamentals

Relative Nature:

- No absolute hot or cold
- Always comparison between objects
- Higher temperature object = hotter
- Scientific measurement requires instruments

Heat Transfer Process:

- Glass of ice water warms up on hot day
- Cup of hot tea cools down at room temperature
- Energy flows until thermal equilibrium
- Direction: hot → cold always

Energy Transfer Definition: Heat = Energy transferred between systems due to temperature difference

10.3 MEASUREMENT OF TEMPERATURE

Thermometer Principles

Physical Properties Used:

• Volume expansion of liquids (mercury, alcohol)

- Electrical resistance changes
- Thermocouple voltage
- Gas pressure changes

Calibration Requirements:

- Two fixed reference points needed
- Standard scale establishment
- Numerical value assignment
- Reproducible measurements

Fixed Points:

- **Ice Point**: Pure water freezing temperature
- **Steam Point**: Pure water boiling temperature
- Both at standard atmospheric pressure

Temperature Scales

Celsius Scale:

- Ice point: 0°C
- Steam point: 100°C
- 100 equal divisions

Fahrenheit Scale:

- Ice point: 32°F
- Steam point: 212°F
- 180 equal divisions

Conversion Formula:

$$(tF - 32)/180 = tC/100$$

or

$$tF = (9/5)tC + 32$$

10.4 IDEAL-GAS EQUATION AND ABSOLUTE TEMPERATURE

Gas Laws Foundation

Boyle's Law: PV = constant (at constant T) **Charles' Law**: V/T = constant (at constant P)

Combined Gas Law: PV/T = constant

Ideal Gas Equation

Standard Form:

$$PV = \mu RT$$

where:

- μ = number of moles
- R = universal gas constant = $8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
- T = absolute temperature in Kelvin

Gas Thermometer:

• Uses gas pressure changes

- More reliable than liquid thermometers
- Same reading regardless of gas type
- Foundation for absolute temperature scale

Absolute Temperature Scale

Absolute Zero:

- Temperature: -273.15°C
- Theoretical minimum temperature
- Gas pressure would reach zero
- Foundation of Kelvin scale

Kelvin Scale:

- Absolute temperature scale
- $0 \text{ K} = -273.15^{\circ}\text{C}$
- Same unit size as Celsius
- **Conversion**: T = tC + 273.15

10.5 THERMAL EXPANSION

Expansion Fundamentals

Universal Behavior: Most substances expand when heated, contract when cooled

Types of Expansion:

- 1. Linear Expansion: Change in length
- 2. Area Expansion: Change in surface area
- 3. **Volume Expansion**: Change in volume

Linear Expansion

Mathematical Relation:

 $\Delta I/I = \alpha I \Delta T$

where:

- $\alpha I = \text{coefficient of linear expansion } (K^{-1})$
- $\Delta I = \text{change in length}$
- I = original length
- ΔT = temperature change

Typical Values ($\times 10^{-5} \text{ K}^{-1}$):

- Aluminum: 2.5
- Copper: 1.7
- Iron: 1.2
- Glass (pyrex): 0.32

Area and Volume Expansion

Area Expansion:

 $\Delta A/A = 2\alpha I \Delta T$

Volume Expansion:

 $\Delta V/V = 3\alpha I \Delta T = \alpha V \Delta T$

Relationship: $\alpha V = 3\alpha I$

Special Cases

Water Anomaly:

- Contracts between 0°C and 4°C
- Maximum density at 4°C
- Important for aquatic life survival
- Lakes freeze from top down

Gases:

- Much larger expansion than solids/liquids
- For ideal gas: $\alpha V = 1/T$
- At 0°C: $\alpha V = 3.7 \times 10^{-3} \text{ K}^{-1}$

Thermal Stress

Definition: Stress developed when thermal expansion is prevented

Formula:

Thermal Stress = $Y \times \alpha I \times \Delta T$

where Y = Young's modulus

Applications: Railway track expansion joints, building design

10.6 SPECIFIC HEAT CAPACITY

Heat Capacity Concepts

Heat Capacity (S):

 $S = \Delta Q/\Delta T$

- Amount of heat needed to change temperature by 1 unit
- Depends on mass of substance

Specific Heat Capacity (s):

 $s = \Delta Q/(m \times \Delta T)$

- Heat per unit mass for unit temperature change
- Characteristic property of material
- SI unit: J kg⁻¹ K⁻¹

Molar Specific Heat (C):

 $C = \Delta Q/(\mu \times \Delta T)$

- Heat per mole for unit temperature change
- SI unit: J mol⁻¹ K⁻¹

Key Values

High Specific Heat:

• Water: 4186 J kg⁻¹ K⁻¹

• Alcohol: 2400 J kg⁻¹ K⁻¹

Low Specific Heat:

• Mercury: 140 J kg⁻¹ K⁻¹

• Lead: 127.7 J kg⁻¹ K⁻¹

Applications of High Specific Heat:

- Water as coolant in radiators
- Water as heater in hot water bags
- Coastal climate moderation
- Desert temperature variations

Gas Specific Heats

Two Types:

- Cp: At constant pressure
- Cv: At constant volume
- Cp > Cv always

10.7 CALORIMETRY

Calorimetry Principle

Fundamental Law: Heat lost by hot body = Heat gained by cold body

Calorimeter Design:

- Metallic vessel with stirrer
- Heat insulating material

- Thermometer arrangement
- Minimizes heat loss to surroundings

Mathematical Expression:

 $mhot \times shot \times \Delta Thot = mcold \times scold \times \Delta Tcold$

Problem-Solving Strategy

- 1. Identify hot and cold substances
- 2. Apply conservation of energy
- 3. Account for calorimeter heat capacity
- 4. Use appropriate specific heat values
- 5. Solve for unknown quantity

10.8 CHANGE OF STATE

Phase Changes

Types:

• **Melting/Fusion**: Solid → Liquid

• **Vaporization**: Liquid → Gas

• **Sublimation**: Solid → Gas (direct)

• **Freezing**: Liquid → Solid

• **Condensation**: Gas → Liquid

Characteristics:

• Temperature remains constant during phase change

- Heat energy continues to be supplied/removed
- Both phases coexist in equilibrium

Latent Heat

Definition: Heat per unit mass required for phase change at constant temperature

Mathematical Form:

```
Q = m \times L
```

where L = latent heat

Types:

- **Lf**: Latent heat of fusion (solid → liquid)
- **Lv**: Latent heat of vaporization (liquid → gas)

Important Values:

- Water: Lf = $3.33 \times 10^5 \text{ J kg}^{-1}$
- Water: Lv = $22.6 \times 10^5 \text{ J kg}^{-1}$

Why Steam Burns More: Steam at 100°C contains $22.6 \times 10^5 \, \text{J kg}^{-1}$ more energy than water at 100°C

Phase Diagrams

Triple Point: Temperature and pressure where all three phases coexist

- Water triple point: 273.16 K, 6.11×10^{-3} Pa
- Used as fundamental temperature reference

Curves:

• Fusion curve: Solid-liquid boundary

• Vaporization curve: Liquid-gas boundary

• **Sublimation curve**: Solid-gas boundary

Pressure Effects

Boiling Point:

- Increases with pressure increase
- Decreases with pressure decrease
- Explains cooking difficulties at high altitudes
- Pressure cooker principle

Regelation: Ice melts under pressure, refreezes when pressure removed

10.9 HEAT TRANSFER

Three Modes of Heat Transfer

10.9.1 Conduction

Mechanism: Heat transfer through molecular collisions without bulk motion

Fourier's Law:

H = KA(TC - TD)/L

where:

• H = rate of heat flow

- K = thermal conductivity
- A = cross-sectional area
- L = length
- (TC TD) = temperature difference

Thermal Conductivity Values (W m⁻¹ K⁻¹): **Good Conductors**:

• Silver: 406

• Copper: 385

• Aluminum: 205

Poor Conductors (Insulators):

• Wood: 0.12

• Glass wool: 0.04

• Air: 0.024

Applications:

- Cooking utensil design
- Building insulation
- Heat sink design

10.9.2 Convection

Mechanism: Heat transfer by bulk motion of fluids

Types:

1. **Natural Convection**: Density differences drive motion

2. Forced Convection: External force drives motion

Examples:

- Sea breeze formation
- Trade winds
- Home heating systems
- Blood circulation

Sea Breeze Mechanism:

- Day: Land heats faster than water
- Hot air rises over land
- Cool air from sea moves inland
- Night: Process reverses

10.9.3 Radiation

Mechanism: Heat transfer via electromagnetic waves

Characteristics:

- No medium required
- Travels at speed of light
- All bodies emit thermal radiation
- Amount depends on temperature and surface properties

Stefan-Boltzmann Law:

```
H = \sigma AT^4 (perfect radiator)

H = e\sigma AT^4 (real body)
```

where:

- $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$
- $e = emissivity (0 \le e \le 1)$
- T = absolute temperature

Wien's Displacement Law:

$$\lambda$$
mT = constant = 2.9 × 10⁻³ m K

- Peak wavelength shifts with temperature
- Used to determine star temperatures

Net Radiation:

$$H = e\sigma A(T^4 - Ts^4)$$

Applications:

- Solar energy
- Thermal imaging
- Infrared heaters
- Spacecraft thermal control

10.10 NEWTON'S LAW OF COOLING

Cooling Law Statement

Mathematical Form:

$$-dQ/dt = k(T_2 - T_1)$$

where:

- T₂ = body temperature
- T_1 = surrounding temperature
- k = positive constant

Conditions:

- Small temperature differences
- Combined effect of conduction, convection, radiation
- Constant surroundings temperature

Derivation and Solution

Starting from heat capacity:

$$dQ = ms dT_2$$

Rate equation:

$$-ms(dT_2/dt) = k(T_2 - T_1)$$

Solution:

$$T_2 = T_1 + C'e^{(-Kt)}$$

where K = k/(ms)

Verification: Plot $In(T_2 - T_1)$ vs t gives straight line with slope -K

Applications

- Forensic science (time of death)
- Food cooling calculations
- Industrial process control
- HVAC system design

SUMMARY - KEY CONCEPTS

1. Temperature and Heat Fundamentals

- Temperature = measure of hotness (relative quantity)
- Heat = energy transfer due to temperature difference
- SI units: Temperature (K), Heat (J)

2. Temperature Measurement

- Thermometric properties vary with temperature
- Fixed points needed for scale calibration
- Celsius and Fahrenheit scales
- Conversion: tF = (9/5)tC + 32

3. Absolute Temperature

- Ideal gas equation: $PV = \mu RT$
- Absolute zero: -273.15°C = 0 K
- Kelvin scale: T = tC + 273.15

4. Thermal Expansion

- Linear: $\Delta I = \alpha I I \Delta T$
- Volume: $\Delta V = \alpha V V \Delta T = 3\alpha I V \Delta T$
- Water anomaly: maximum density at 4°C
- Thermal stress when expansion prevented

5. Heat Capacity

- Specific heat capacity: $s = \Delta Q/(m\Delta T)$
- Water has highest specific heat among common substances
- Explains coastal climate moderation

6. Calorimetry

- Heat lost = Heat gained (isolated system)
- Accounts for calorimeter heat capacity
- Conservation of energy principle

7. Phase Changes

- Temperature constant during phase change
- Latent heat: Q = mL
- Fusion, vaporization, sublimation
- Phase diagrams and triple point

8. Heat Transfer Modes

- Conduction: $H = KA(\Delta T)/L$
- Convection: Bulk fluid motion
- **Radiation**: $H = e\sigma AT^4$

9. Newton's Law of Cooling

- Rate ∝ temperature difference
- Valid for small temperature differences
- Exponential cooling: $T = T_1 + C'e^{(-Kt)}$

POINTS TO PONDER - CRITICAL INSIGHTS

1. Temperature Scale Choice

- Absolute zero is fundamental physical limit
- Kelvin scale eliminates negative temperatures
- Triple point provides precise reference

2. Heat vs Temperature

- Adding heat doesn't always increase temperature
- Phase changes involve latent heat
- Temperature measures average kinetic energy

3. Thermal Expansion Applications

- Railway tracks need expansion joints
- Bimetallic strips in thermostats
- Fit tight lids by heating
- Glass cracking due to uneven expansion

4. Specific Heat Significance

- High specific heat = thermal stability
- Water's role in climate regulation

• Material selection for thermal applications

5. Heat Transfer Efficiency

- Conduction needs material contact
- Convection needs fluid medium
- Radiation works in vacuum
- Combined effects in real situations

JEE/NEET SPECIFIC IMPORTANT POINTS

High-Yield Topics

1. Thermal Expansion

Master these relationships:

- Linear, area, volume expansion coefficients
- Thermal stress calculations
- Bi-metallic strip behavior
- Applications in daily life

2. Calorimetry Problems

Key skills:

- Heat balance equations
- Multi-component systems
- Phase change calculations
- Mixture temperature determination

3. Heat Transfer

Applications:

- Conduction in composite rods
- Radiation from hot bodies
- Convection current formation
- Newton's law of cooling

4. Phase Changes

Standard scenarios:

- Ice melting calculations
- Steam condensation problems
- Latent heat determinations
- P-T diagram interpretation

Common Question Types

1. Direct Application Problems

- Thermal expansion calculations
- Specific heat determinations
- Heat transfer rate problems
- Temperature conversions

2. Calorimetry Problems

- Mixture problems
- Metal cooling in water

- Ice melting calculations
- Heat capacity measurements

3. Heat Transfer Analysis

- Conduction through composite materials
- Radiation from bodies
- Cooling rate calculations
- Thermal resistance problems

4. Conceptual Understanding

- Phase diagram interpretation
- Heat capacity comparisons
- Thermal property explanations
- Real-world applications

Problem-Solving Strategy

1. Setup Phase

- Identify type of thermal process
- List given and required quantities
- Choose appropriate equations
- Set up proper sign conventions

2. Calculation Phase

- Apply conservation of energy
- Account for all heat transfers

- Include phase changes if present
- Substitute values carefully

3. Verification Phase

- Check dimensional consistency
- Verify physical reasonableness
- Consider limiting cases
- Review calculation steps

MEMORY AIDS AND MNEMONICS

Thermal Expansion

"LAV 123":

- L: Linear (αl)
- A: Area (2αl)
- V: Volume (3αl)

Heat Transfer Modes

"CCR - Call Convection Radiation":

- Conduction (contact required)
- Convection (currents in fluids)
- Radiation (no medium needed)

Calorimetry

"Heat Lost = Heat Gained": Always apply energy conservation Account for all components

Phase Changes

"TLC - Temperature Level Constant": Temperature remains constant during phase changes Latent heat involved

PRACTICE PROBLEMS FOR JEE/NEET

Level 1: Basic Application

Problem 1: A steel rod of length 1m at 20°C is heated to 100°C. Find the increase in length. (α steel = 1.2 × 10⁻⁵ K⁻¹)

Solution: $\Delta I = \alpha I I \Delta T = 1.2 \times 10^{-5} \times 1 \times 80 = 9.6 \times 10^{-4} \text{ m}$

Problem 2: 100g of water at 80°C is mixed with 200g of water at 20°C. Find final temperature.

Solution: Heat lost by hot water = Heat gained by cold water $100 \times 4.18 \times (80 - T) = 200 \times 4.18 \times (T - 20) T = 40$ °C

Level 2: Intermediate

Problem 3: An iron ball at 100°C is dropped into 1kg of water at 20°C. Final temperature is 25°C. Find mass of iron ball. (siron = $450 \text{ J kg}^{-1} \text{ K}^{-1}$)

Solution: Heat lost by iron = Heat gained by water $m \times 450 \times (100-25) = 1 \times 4180 \times (25-20) m = 0.62 kg$

Level 3: Advanced

Problem 4: A composite rod with steel and copper sections is heated. Find temperature distribution and heat flow rate.

Solution: Requires thermal conductivity analysis and steady-state heat flow principles.

ADVANCED TOPICS FOR JEE

1. Composite Heat Transfer

- Series and parallel thermal resistance
- Interface temperature calculations
- Multi-layer insulation systems

2. Radiation Heat Transfer

- Stefan-Boltzmann law applications
- Emissivity effects
- Net radiation exchange
- Wien's displacement law

3. Phase Diagram Analysis

- Critical point understanding
- Phase boundary equations
- Clausius-Clapeyron equation

4. Non-Steady State Problems

- Transient heat conduction
- Lumped capacity method
- Time-dependent solutions

ERROR ANALYSIS IN THERMAL PHYSICS

Common Mistakes

1. Sign Convention Errors

- Heat gained vs lost confusion
- Temperature difference signs
- Direction of heat flow

2. Unit Conversion Problems

- °C vs K confusion
- Energy unit mixing
- Area/volume calculations

3. Phase Change Oversight

- Ignoring latent heat
- Temperature change during phase transition
- Multi-step process analysis

Prevention Strategies

- 1. Always define positive directions clearly
- 2. Check units at each calculation step
- 3. Draw energy flow diagrams
- 4. Verify answers using limiting cases

EXPERIMENTAL CONNECTIONS

1. Historical Experiments

- Joule's mechanical equivalent of heat
- Black's calorimetry studies
- Stefan-Boltzmann radiation law

2. Modern Applications

- Thermal imaging technology
- Solar panel efficiency
- Building energy management
- Spacecraft thermal control

3. Laboratory Techniques

- Calorimeter design principles
- Temperature measurement accuracy
- Heat transfer coefficient determination

EXAM SPRINT SUMMARY

Master Thermal Properties through focused study of:

- Temperature scales and conversion
- Thermal expansion applications
- Heat capacity and calorimetry
- Phase changes and latent heat
- Heat transfer mechanisms
- Newton's law of cooling

Regular practice of numerical problems and conceptual understanding essential for JEE/NEET success.

Source: NCERT Physics Class 11, Chapter 10 - Comprehensive coverage for competitive exam preparation