Chapter 1: Units and Measurement

Comprehensive Study Notes

Class 11 Physics - NCERT Based

EXAM SPRINT - Complete Coverage for JEE and NEET Examinations

1.1 INTRODUCTION

What is Measurement?

Definition: Measurement of any physical quantity involves comparison with a certain basic, arbitrarily chosen, internationally accepted reference standard called **unit**.

Expression of Measurement:

Result = Number (Numerical measure) + Unit

Example: Length = 5.2 meters

- **5.2** = Numerical measure
- **meters** = Unit

Types of Physical Quantities

1. Fundamental/Base Quantities

Definition: Basic physical quantities that cannot be expressed in terms of other quantities **Examples:** Length, Mass, Time, Electric Current, Temperature, Amount of Substance, Luminous Intensity

2. Derived Quantities

Definition: Physical quantities that can be expressed as combinations of fundamental quantities

Examples: Area, Volume, Speed, Force, Energy, Density

Units Classification

1. Fundamental/Base Units

Definition: Units for fundamental quantities **Characteristics:**

- Independent of other units
- Arbitrarily chosen
- Internationally accepted standards

2. Derived Units

Definition: Units obtained by combining base units **Formation:** Mathematical combinations of base units **Examples:**

- Area = length \times length \rightarrow m²
- Speed = length/time → m/s
- Force = mass × acceleration → kg·m/s²

System of Units

Definition: Complete set of base units and derived units used for measurement

1.2 THE INTERNATIONAL SYSTEM OF UNITS (SI)

Historical Systems

1. CGS System

Base Units:

• **Length:** Centimeter (cm)

• Mass: Gram (g)

• Time: Second (s)

2. FPS (British) System

Base Units:

• **Length:** Foot (ft)

• Mass: Pound (lb)

• Time: Second (s)

3. MKS System

Base Units:

• **Length:** Meter (m)

• Mass: Kilogram (kg)

• Time: Second (s)

SI System (Système Internationale d'Unites)

Development

Organization: Bureau International des Poids et Mesures (BIPM) Established: 1971 Recent

Revision: November 2018

Advantages of SI

1. **Decimal System:** Easy conversions

2. **International Acceptance:** Worldwide usage

3. **Scientific Consistency:** Based on fundamental constants

4. Commercial Convenience: Universal standards

Seven SI Base Units

Quantity	Unit Name	Symbol	Key Definition Concept
Length	meter	m	Speed of light in vacuum
Mass	kilogram	kg	Planck constant
Time	second	S	Caesium-133 atom frequency
Electric Current	ampere	А	Elementary charge
Temperature	kelvin	K	Boltzmann constant
Amount of Substance	mole	mol	Avogadro constant
Luminous Intensity	candela	cd	Luminous efficacy
◀	ı	1)

Detailed SI Base Unit Definitions

1. Meter (m) - Length

Definition: Defined by fixing the speed of light in vacuum **Value:** c = 299,792,458 m/s (exact)

Previous Standard: Platinum-iridium bar (obsolete)

2. Kilogram (kg) - Mass

Definition: Defined by fixing the Planck constant **Value:** $h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$ (exact)

Previous Standard: International Prototype Kilogram (obsolete)

3. Second (s) - Time

Definition: Based on caesium-133 atom transitions **Value:** $\Delta vcs = 9,192,631,770$ Hz (exact)

Physical Basis: Hyperfine transition frequency

4. Ampere (A) - Electric Current

Definition: Defined by fixing the elementary charge **Value:** $e = 1.602176634 \times 10^{-19} C$ (exact)

Relationship: $C = A \cdot s$

5. Kelvin (K) - Temperature

Definition: Defined by fixing the Boltzmann constant **Value:** $k = 1.380649 \times 10^{-23}$ J/K (exact)

Reference Point: Triple point of water

6. Mole (mol) - Amount of Substance

Definition: Contains exactly $6.02214076 \times 10^{23}$ elementary entities **Value:** NA = $6.02214076 \times 10^{23}$ mol⁻¹ (Avogadro constant) **Note:** Elementary entities must be specified (atoms, molecules, ions, etc.)

7. Candela (cd) - Luminous Intensity

Definition: Defined by fixing luminous efficacy of monochromatic radiation **Frequency:** 540×10^{12}

Hz Value: Kcd = 683 lm/W (exact)

Supplementary SI Units

1. Plane Angle - Radian (rad)

Definition: θ = arc length/radius = s/r **Nature:** Dimensionless **Full Circle:** 2π radians = 360°

2. Solid Angle - Steradian (sr)

Definition: Ω = intercepted area/radius² = A/r² **Nature:** Dimensionless **Full Sphere:** 4π steradians

SI Prefixes for Multiples and Sub-multiples

Prefix	Symbol	Factor	Example
tera	Т	10 ¹²	1 THz = 10 ¹² Hz
giga	G	10°	1 GB = 10 ⁹ bytes
mega	М	10 ⁶	1 MHz = 10 ⁶ Hz
kilo	k	10³	$1 \text{ km} = 10^3 \text{ m}$
centi	С	10 ⁻²	$1 \text{ cm} = 10^{-2} \text{ m}$
milli	m	10 ⁻³	$1 \text{ mm} = 10^{-3} \text{ m}$
micro	μ	10 ⁻⁶	$1 \mu \text{m} = 10^{-6} \text{m}$
nano	n	10 ⁻⁹	1 nm = 10 ⁻⁹ m
pico	р	10 ⁻¹²	$1 \text{ pm} = 10^{-12} \text{ m}$
◀	·	·	•

Some Non-SI Units Still in Use

Quantity	Unit	Symbol	SI Equivalent
Time	minute	min	60 s
Time	hour	h	3600 s
Time	day	d	86,400 s
Angle	degree	0	(π/180) rad
Volume	liter	L	10 ⁻³ m ³
Mass	metric ton	t	10 ³ kg
∢		•	•

1.3 SIGNIFICANT FIGURES

Introduction to Measurement Errors

Key Concept: Every measurement involves errors due to:

- 1. **Instrument limitations** (least count)
- 2. Environmental conditions
- 3. Human error
- 4. Random fluctuations

Definition of Significant Figures

Significant Figures: All digits in a measurement that are known reliably plus the first digit that is uncertain.

Example:

- **1.62 s:** Three significant figures (1, 6 certain; 2 uncertain)
- **287.5 cm:** Four significant figures (2, 8, 7 certain; 5 uncertain)

Rules for Determining Significant Figures

Rule 1: Non-zero Digits

All non-zero digits are significant

- 1234 → 4 significant figures
- 56.78 → 4 significant figures

Rule 2: Zeros Between Non-zero Digits

All zeros between non-zero digits are significant

- 1002 → 4 significant figures
- 50.06 → 4 significant figures

Rule 3: Leading Zeros

Zeros to the left of the first non-zero digit are NOT significant

- 0.0023 → 2 significant figures (2, 3)
- 0.00456 → 3 significant figures (4, 5, 6)

Rule 4: Trailing Zeros Without Decimal

Trailing zeros in numbers without decimal point are NOT significant

- 1200 → 2 significant figures (1, 2)
- 45000 → 2 significant figures (4, 5)

Rule 5: Trailing Zeros With Decimal

Trailing zeros in numbers with decimal point are significant

- 12.00 → 4 significant figures
- 0.2500 → 4 significant figures

Scientific Notation and Significant Figures

Advantages of Scientific Notation

- 1. Eliminates ambiguity about trailing zeros
- 2. **Clearly shows** significant figures
- 3. **Simplifies** very large or small numbers
- 4. **Standardizes** representation

Format: a × 10^b

- a: Number between 1 and 10
- **b:** Integer exponent
- All digits in 'a' are significant

Examples:

- $4700 \text{ m} = 4.7 \times 10^3 \text{ m} (2 \text{ sig figs})$
- •4700. m = 4.700×10^3 m (4 sig figs)
- $0.00340 = 3.40 \times 10^{-3}$ (3 sig figs)

Order of Magnitude

Definition: Power of 10 when number is expressed approximately as 10^b

Determination:

- If coefficient (a) ≤ 5: round down
- If coefficient (a) > 5: round up to next power of 10

Examples:

- Earth's diameter: 1.28 × 10⁷ m → Order of magnitude: 10⁷
- Hydrogen atom: 1.06×10^{-10} m \rightarrow Order of magnitude: 10^{-10}

1.3.1 Rules for Arithmetic Operations

Rule 1: Multiplication and Division

Result should have the same number of significant figures as the measurement with the fewest significant figures

Example:

- $4.237 \text{ g} \div 2.51 \text{ cm}^3 = 1.69 \text{ g/cm}^3 \text{ (3 sig figs)}$
- 3.00×10^8 m/s $\times 3.1557 \times 10^7$ s = 9.47×10^{15} m (3 sig figs)

Rule 2: Addition and Subtraction

Result should have the same number of decimal places as the measurement with the fewest decimal places

Examples:

- 436.32 g + 227.2 g + 0.301 g = 663.8 g (1 decimal place)
- 0.307 m 0.304 m = 0.003 m (3 decimal places)

1.3.2 Rounding Off Rules

Standard Rounding Rules:

- 1. **If digit > 5:** Round up
 - 2.746 → 2.75 (3 sig figs)
- 2. **If digit < 5:** Round down
 - 1.743 → 1.74 (3 sig figs)
- 3. **If digit = 5:** Round to even
 - 2.745 → 2.74 (preceding digit 4 is even)
 - 2.735 → 2.74 (preceding digit 3 is odd, round up)

Multi-step Calculations:

- **Keep one extra digit** in intermediate steps
- Round to proper significant figures only at the end

• **Prevents accumulation** of rounding errors

1.3.3 Uncertainty in Arithmetic Operations

Addition/Subtraction Error Combination

Absolute errors add

- If $I = 16.2 \pm 0.1$ cm and $b = 10.1 \pm 0.1$ cm
- Area = $lb = 163.62 \pm 2.6 \text{ cm}^2$
- Final result: 164 ± 3 cm²

Multiplication/Division Error Combination

Relative errors add

- Relative error in I = 0.6%
- Relative error in b = 1.0%
- Relative error in lb = 1.6%

Significant Figure Dependency on Magnitude

Same absolute error, different relative errors:

- 1.02 g \pm 0.01 g \rightarrow Relative error = \pm 1%
- 9.89 g \pm 0.01 g \rightarrow Relative error = \pm 0.1%

1.4 DIMENSIONS OF PHYSICAL QUANTITIES

Definition of Dimensions

Dimensions: The powers (exponents) to which the base quantities are raised to represent a

physical quantity.

Notation: Square brackets [] indicate "dimensions of"

• [Length] = [L]

• [Mass] = [M]

• [Time] = [T]

Seven Fundamental Dimensions

Physical Quantity	Dimension	SI Unit
Length	[L]	m
Mass	[M]	kg
Time	[Т]	S
Electric Current	[A]	А
Temperature	[K]	K
Amount of Substance	[mol]	mol
Luminous Intensity	[cd]	cd
4	')

Mechanical Quantities (In terms of [M], [L], [T])

Examples:

1. **Volume:** $[L] \times [L] \times [L] = [L^3]$

2. **Speed:** $[L]/[T] = [LT^{-1}]$

3. Acceleration: $[L]/[T^2] = [LT^{-2}]$

4. Force: $[M][L]/[T^2] = [MLT^{-2}]$

5. **Density:** $[M]/[L^3] = [ML^{-3}T^0]$

Important Dimensional Formulas

Physical Quantity	Formula	Dimensions
Area	length × breadth	[L ²]
Volume	length × breadth × height	[L³]
Velocity	displacement/time	[LT ⁻¹]
Acceleration	velocity/time	[LT ⁻²]
Force	mass × acceleration	[MLT ⁻²]
Pressure	force/area	[ML ⁻¹ T ⁻²]
Work/Energy	force × displacement	[ML ² T ⁻²]
Power	work/time	[ML ² T ⁻³]
Momentum	mass × velocity	[MLT ⁻¹]
Impulse	force × time	[MLT ⁻¹]
◀	·	>

1.5 DIMENSIONAL FORMULAE AND DIMENSIONAL EQUATIONS

Dimensional Formula

Definition: Expression showing how and which base quantities represent the dimensions of a physical quantity.

Examples:

• Volume: [M⁰L³T⁰]

• Speed: [M⁰LT⁻¹]

• Force: [MLT⁻²]

• Density: [ML⁻³T⁰]

Dimensional Equation

Definition: Equation obtained by equating a physical quantity with its dimensional formula.

Format: [Physical Quantity] = [Dimensional Formula]

Examples:

- $[V] = [M^0L^3T^0]$
- $[v] = [M^0LT^{-1}]$
- $[F] = [MLT^{-2}]$
- $[\rho] = [ML^{-3}T^0]$

Deriving Dimensional Formulas

From Definition:

Density = Mass/Volume

•
$$[\rho] = [M]/[L^3] = [ML^{-3}T^0]$$

From Equations:

Newton's Second Law: F = ma

• $[F] = [M][LT^{-2}] = [MLT^{-2}]$

1.6 DIMENSIONAL ANALYSIS AND ITS APPLICATIONS

Principle of Homogeneity

Statement: Physical quantities can only be added or subtracted if they have the same dimensions.

Mathematical Equations: All terms must have the same dimensions.

1.6.1 Checking Dimensional Consistency

Process:

- 1. Write dimensions of each term
- 2. Check if all terms have same dimensions
- 3. **Verify LHS = RHS** dimensionally

Example: Kinematic Equation

Equation: $x = x_0 + v_0 t + \frac{1}{2} a t^2$

Dimensional Check:

Result: All terms have dimension [L] → Equation is dimensionally consistent

Limitations of Dimensional Analysis:

- 1. Cannot determine dimensionless constants
- 2. Cannot verify exact numerical relationships
- 3. Cannot distinguish between quantities with same dimensions
- 4. Trigonometric, logarithmic, exponential functions must have dimensionless arguments

1.6.2 Deducing Relations Among Physical Quantities

Method:

- 1. **Identify variables** on which quantity depends
- 2. Assume product-type dependence
- 3. Apply principle of dimensional homogeneity
- 4. Solve for exponents

Example: Simple Pendulum Time Period

Given: T depends on length (I), mass (m), and gravity (g)

Assume: $T = k I^x g^y m^z (k = dimensionless constant)$

Dimensional Analysis:

- $[T] = [L^x][LT^{-2}]^y[M^z]$
- $[T] = [L^{(x+y)}][T^{(-2y)}][M^z]$

Equating Powers:

- For [M]: z = 0
- For [T]: $-2y = 1 \rightarrow y = -1/2$
- For [L]: $x + y = 0 \rightarrow x = 1/2$

Result: $T = k\sqrt{(l/g)}$ where $k = 2\pi$

Applications of Dimensional Analysis:

- 1. Check equation correctness
- 2. **Derive relationships**
- 3. Convert units
- 4. Estimate orders of magnitude

Limitations:

- 1. Cannot determine pure numbers
- 2. Limited to product-type dependencies
- 3. Cannot handle trigonometric relationships
- 4. Maximum 3-4 independent variables

JEE/NEET Specific Important Points

High-Yield Topics:

- 1. SI Base Units:
 - Names, symbols, definitions
 - Recent redefinitions (2018)
 - Fundamental vs derived quantities
- 2. Significant Figures:
 - Rules for counting
 - Arithmetic operations rules
 - Scientific notation
 - Order of magnitude
- 3. Dimensional Analysis:
- Dimensional formulas
- Checking equation consistency
- Deriving relationships

• Unit conversions

4. Error Analysis:

- Absolute vs relative errors
- Error propagation in calculations
- Precision vs accuracy

Common JEE/NEET Question Types:

1. Significant Figures Problems:

- Counting significant figures
- Arithmetic with significant figures
- Scientific notation conversions

2. Dimensional Analysis:

- Finding dimensional formula
- Checking equation validity
- Deriving unknown relationships

3. Unit Conversions:

- Between different systems
- Using dimensional analysis
- Prefix conversions

4. Error Calculations:

• Percentage errors

- Combination of errors
- Relative error problems

Memory Aids and Mnemonics

SI Base Units:

"My Little Tiny Ant Truly Ate Many Cookies"

- **M**eter (Length)
- L... → Wait, let me fix this:

"Many Little Tigers Always Take Much Lunch"

- **M**eter (Length)
- L... Let me try again:

"Length Mass Time Amp Temp Amount Light"

- **L**ength → Meter
- **M**ass → Kilogram
- **T**ime → Second
- **A**mpere → Current
- **T**emperature → Kelvin
- Amount → Mole
- **L**uminous → Candela

Significant Figure Rules:

"All Non-zero, Between Significant, Leading Not, Trailing Maybe"

- All non-zero digits significant
- **B**etween non-zero digits significant
- Leading zeros not significant
- Trailing zeros maybe (depends on decimal)

Common Dimensional Formulas:

"Force MLT-2, Energy ML2T-2, Power ML2T-3"

Order of Magnitude Examples:

• Human height: 10° m (1 m)

• **Room size:** 10¹ m (10 m)

• Building height: 10² m (100 m)

• **City size:** 10⁴ m (10 km)

• Earth radius: 10^7 m

• **Atom size:** 10⁻¹⁰ m

Practice Problems for JEE/NEET

Significant Figures:

- 1. **How many significant figures:** 0.02370 g? **Answer:** 4 (2, 3, 7, 0)
- 2. **Calculate with proper significant figures:** 4.237 × 2.51 ÷ 1.6 **Answer:** 6.6 (2 significant figures)
- 3. **Express in scientific notation:** 0.000456 with proper significant figures **Answer:** 4.56×10^{-4} (3 significant figures)

Dimensional Analysis:

1. Check dimensional consistency: $v^2 = u^2 + 2as$ Solution: $[LT^{-1}]^2 = [LT^{-1}]^2 + [LT^{-2}][L] = [L^2T^{-2}] \checkmark$

2. Find dimensions of: Gravitational constant G in F = Gm_1m_2/r^2 Answer: $[G] = [M^{-1}L^3T^{-2}]$

3. **Derive formula:** Time period of simple pendulum depends on I, g, m **Answer:** $T \propto \sqrt{I/g}$, independent of mass

Unit Conversion:

1. **Convert:** 72 km/h to m/s **Answer:** $72 \times (1000/3600) = 20 \text{ m/s}$

2. **Express:** 1 J in CGS units **Answer:** $1 \text{ J} = 10^7 \text{ erg}$

Error Analysis:

1. If I = 10.0 \pm 0.1 cm, find relative error Answer: $(0.1/10.0) \times 100\% = 1\%$

Summary Tables

SI Base Quantities Quick Reference:

Quantity	Symbol	Unit	Symbol
Length	1	meter	m
Mass	m	kilogram	kg
Time	t	second	S
Current	I	ampere	А
Temperature	Т	kelvin	К
Amount	n	mole	mol
Luminous Intensity	I	candela	cd
←			

Common Derived Units:

Quantity	Unit	Symbol	In Base Units	
Force	newton	N	kg·m·s ⁻²	
Energy	joule	J	kg·m²·s⁻²	
Power	watt	W	kg·m²·s⁻³	
Pressure	pascal	Pa	kg·m ⁻¹ ·s ⁻²	
Frequency	hertz	Hz	s ⁻¹	
▲	'	1	<u>'</u>	•

Significant Figure Summary:

Type of Zero	Significant?	Example
Leading	No	0.0023 (2 sig figs)
Between non-zero	Yes	1002 (4 sig figs)
Trailing (no decimal)	No	1200 (2 sig figs)
Trailing (with decimal)	Yes	12.00 (4 sig figs)
▲	'	•

Advanced Topics for JEE

Dimensional Analysis Limitations:

- 1. Cannot determine dimensionless constants (like 2π , $\frac{1}{2}$)
- 2. Cannot verify trigonometric relationships
- 3. Limited to power law relationships
- 4. Cannot distinguish between similar quantities (work vs torque)

Error Analysis Types:

1. **Systematic Errors:** Consistent, predictable

2. Random Errors: Unpredictable fluctuations

3. Gross Errors: Human mistakes

4. Instrumental Errors: Due to instrument limitations

Precision vs Accuracy:

• **Precision:** Reproducibility of measurements

• Accuracy: Closeness to true value

• Can have high precision but low accuracy

EXAM SPRINT - Master Units and Measurement with focused study on SI units, significant figures, dimensional analysis, and error calculations. Regular practice of numerical problems and unit conversions is essential for JEE/NEET success.

Source: NCERT Physics Class 11, Chapter 1 - Comprehensive coverage for competitive exam preparation