Chapter 14: Waves - Detailed Notes

ExamSprint Watermark

14.1 INTRODUCTION

What Are Waves?

Definition: Patterns of disturbance that move without actual physical transfer of matter as a whole

Key Characteristics:

- **Energy Transport**: Waves carry energy from one point to another
- **Information Transfer**: Pattern of disturbance contains information
- No Mass Transfer: Medium doesn't flow with the wave
- **Communication Basis**: All communication depends on wave transmission

Everyday Examples:

- Water Waves: Cork pieces move up-down, not outward with circles
- Sound Waves: Air doesn't flow from speaker to ear
- **Seismic Waves**: Ground vibrations during earthquakes
- **Light Waves**: Energy reaches us from distant stars

Types of Waves:

1. Mechanical Waves

- **Require medium**: Cannot propagate through vacuum
- **Examples**: Sound waves, water waves, seismic waves, waves on strings

- Mechanism: Oscillations of medium particles via elastic forces
- **Depend on**: Elastic properties and inertia of medium

2. Electromagnetic Waves

- Don't require medium: Can travel through vacuum
- **Examples**: Light, radio waves, X-rays, microwaves
- **Speed in vacuum**: c = 299,792,458 m/s (constant for all EM waves)
- **Study**: Covered in Class XII

3. Matter Waves

- Associated with: Particles like electrons, protons, atoms
- **Quantum mechanical**: Abstract but technologically important
- **Applications**: Electron microscopes
- **Study**: Advanced quantum mechanics

Physical Mechanism of Wave Propagation:

Spring Chain Model:

- Connected springs demonstrate wave propagation
- Disturbance travels without springs moving bodily
- Each spring oscillates about equilibrium position
- **Analogy**: Train bogies with spring coupling

Sound Wave Mechanism:

- **Compression/Rarefaction**: Creates density changes (δρ)
- **Pressure Changes**: δp proportional to density changes

- **Restoring Force**: Pressure differences drive oscillations
- **Propagation**: Disturbance moves region to region

Solid Wave Mechanism:

- Lattice Structure: Atoms arranged periodically
- **Equilibrium Forces**: Each atom balanced by neighbors
- **Elastic Restoring Force**: Displacement creates spring-like forces
- Model: Atoms as masses connected by springs

14.2 TRANSVERSE AND LONGITUDINAL WAVES

Transverse Waves

Definition: Particle oscillation perpendicular to wave propagation direction

Characteristics:

- Particle Motion: ⊥ to wave direction
- **Medium Requirement**: Only in media that can sustain shear stress
- Possible in: Solids (not in fluids under normal conditions)
- **Example**: Waves on stretched string

String Wave Analysis:

- Elements oscillate up-down (y-direction)
- Wave travels along string (x-direction)
- **Fixed time**: Shows wave shape in space
- **Fixed position**: Shows particle oscillation in time

Longitudinal Waves

Definition: Particle oscillation parallel to wave propagation direction

Characteristics:

• Particle Motion: || to wave direction

• **Medium Requirement**: Any medium with bulk elasticity

• **Possible in**: Solids, liquids, and gases

• **Example**: Sound waves in air

Sound Wave Mechanism:

• **Piston Motion**: Creates compressions and rarefactions

• **Density Variations**: Higher/lower than equilibrium

• **Pressure Waves**: Propagate through medium

• **No Air Flow**: Only pressure disturbance moves

Medium Requirements:

Wave Type	Stress Type	Media Possible	
Transverse	Shear	Solids only	
Longitudinal	Compressive	Solids, liquids, gases	
◀	'	<u>'</u>	•

Special Cases:

Water Surface Waves:

- Capillary Waves: Short wavelength (few cm), surface tension restoring force
- Gravity Waves: Long wavelength (meters to hundreds of meters), gravity restoring force

- Complex Motion: Combined longitudinal and transverse components
- Not purely transverse: Despite appearance

Wave Speeds:

- Generally different speeds for transverse and longitudinal waves in same medium
- Depends on different elastic properties

14.3 DISPLACEMENT RELATION IN A PROGRESSIVE WAVE

Mathematical Description

Sinusoidal Traveling Wave:

$$y(x,t) = a \sin(kx - \omega t + \phi)$$

Alternative Form:

$$y(x,t) = A \sin(kx - \omega t) + B \cos(kx - \omega t)$$

Where: $a = \sqrt{(A^2 + B^2)}$ and $\tan \varphi = B/A$

Physical Interpretation:

Wave Traveling in +x Direction:

$$y(x,t) = a \sin(kx - \omega t + \phi)$$

Wave Traveling in -x Direction:

```
y(x,t) = a \sin(kx + \omega t + \phi)
```

Parameter Definitions:

Amplitude (a):

- Physical Meaning: Maximum displacement from equilibrium
- **Always Positive**: By convention
- Range: y varies between +a and -a
- **Units**: Same as displacement (meters)

Phase:

- **Definition**: $(kx \omega t + \phi)$
- **Determines**: Displacement at any position and time
- Initial Phase: φ (at x = 0, t = 0)
- Phase Difference: Determines interference effects

14.3.1 Amplitude and Phase

Amplitude Properties:

- Represents maximum particle displacement
- Independent of position and time for progressive wave
- Determined by energy of wave source
- Same for all particles in ideal progressive wave

Phase Significance:

• Determines instantaneous displacement

- Controls interference between waves
- Can be set to zero by choice of origin
- Phase differences create interference patterns

14.3.2 Wavelength and Angular Wave Number

Wavelength (λ):

Definition: Minimum distance between two points having same phase

Mathematical Derivation:

For same displacement at positions x and $x + \lambda$:

$$sin(kx - \omega t + \phi) = sin(k(x + \lambda) - \omega t + \phi)$$

This requires: $(k\lambda = 2\pi)$

Therefore: $\lambda = 2\pi/k$

Angular Wave Number (k):

 $k = 2\pi/\lambda$

- Units: rad/m or m⁻¹
- **Physical Meaning**: 2π times number of waves per unit length
- Also Called: Propagation constant

14.3.3 Period, Angular Frequency and Frequency

Period (T):

Definition: Time for one complete oscillation

For particle at x = 0:

$$y(0,t) = a \sin(-\omega t) = -a \sin(\omega t)$$

Same displacement after time T:

$$-a \sin(\omega t) = -a \sin(\omega (t + T))$$

This requires: $\omega T = 2\pi$

Therefore: $(T = 2\pi/\omega)$

Angular Frequency (ω):

$$\omega = 2\pi/T$$

- **Units**: rad/s
- **Physical Meaning**: Rate of phase change

Frequency (ν):

$$v = 1/T = \omega/(2\pi)$$

- Units: Hz (hertz)
- Physical Meaning: Number of oscillations per second

Longitudinal Wave Description:

For longitudinal waves, displacement function:

```
s(x,t) = a \sin(kx - \omega t + \phi)
```

Where s(x,t) = displacement parallel to propagation direction

14.4 THE SPEED OF A TRAVELLING WAVE

General Speed Formula

Wave Speed: Rate at which wave pattern moves

Derivation from Phase Condition:

For constant phase: $(kx - \omega t = constant)$

Differentiating: $(k(dx/dt) - \omega = 0)$

Therefore: $v = \omega/k$

Alternative Forms:

$$v = \omega/k = \lambda v = \lambda/T$$

Universal Relation:

$$v = \lambda v$$

Physical Meaning: In time T (one period), wave travels distance λ (one wavelength)

Wave Speed Dependencies:

• Medium Properties: Elastic properties and inertia

- Not Wave Properties: Independent of λ , ν , or amplitude
- Source Determines: Frequency of wave generated
- Medium Determines: Wave speed
- **Speed and Frequency**: Together determine wavelength

14.4.1 Speed of Transverse Wave on Stretched String

Dimensional Analysis Approach:

Relevant Quantities:

- Tension: T [MLT⁻²]
- Linear mass density: $\mu = m/L [ML^{-1}]$

Dimensional Check:

$$[T/\mu] = [MLT^{-2}]/[ML^{-1}] = [L^2T^{-2}]$$

Therefore: $(\sqrt{T/\mu})$ has dimensions $[LT^{-1}]$

Result:

$$v = \sqrt{T/\mu}$$

Physical Interpretation:

- **Higher Tension**: Faster wave (stronger restoring force)
- **Higher Mass Density**: Slower wave (more inertia)
- String Properties: Completely determine speed

Wavelength Determination:

$$\lambda = v/v = \sqrt{(T/\mu)/v}$$

14.4.2 Speed of Longitudinal Waves (Sound)

Bulk Modulus Approach:

Relevant Quantities:

- Bulk Modulus: $B = -\Delta P/(\Delta V/V)$ [ML⁻¹T⁻²]
- Mass Density: ρ [ML⁻³]

Dimensional Check:

$$[B/\rho] = [ML^{-1}T^{-2}]/[ML^{-3}] = [L^2T^{-2}]$$

General Formula:

$$v = \sqrt{(B/\rho)}$$

For Solid Bars:

$$v = \sqrt{(Y/\rho)}$$

Where Y = Young's modulus

Speed Comparison:

Medium Type	Typical Speed (m/s)	Reason
Gases	300-500	Low bulk modulus
Liquids	1000-1500	Higher bulk modulus
Solids	3000-6000	Highest bulk modulus

Sound in Ideal Gas:

Newton's Formula (Isothermal):

$$v=\sqrt{(P/\rho)}$$

- **Problem**: 15% error compared to experiment
- **Assumption**: Isothermal pressure changes

Laplace Correction (Adiabatic): For adiabatic process: PV' = constant

Adiabatic bulk modulus: $(B_ad = \gamma P)$

Therefore: $v = \sqrt{(\gamma P/\rho)}$

- γ: Ratio of specific heats (Cp/Cv)
- For air: y = 7/5 = 1.4
- **Result**: Agrees with experimental value (331 m/s at STP)

14.5 THE PRINCIPLE OF SUPERPOSITION OF WAVES

Statement:

When two or more waves pass through same medium simultaneously, net displacement at any point is algebraic sum of individual displacements

Mathematical Expression:

$$y(x,t) = y_1(x,t) + y_2(x,t) + ... + y_n(x,t)$$

Or:
$$(y = \Sigma_i f_i(x - vt))$$

Key Principles:

- Wave Independence: Each wave moves as if others aren't present
- Linear Addition: Displacements add algebraically
- **Temporary Effect**: During overlap only
- Wave Identity: Waves retain identity after crossing

Interference of Harmonic Waves

Setup:

Two harmonic waves with same ω , k, amplitude a:

$$y_1(x,t) = a \sin(kx - \omega t)$$

 $y_2(x,t) = a \sin(kx - \omega t + \phi)$

Resultant Wave:

$$y(x,t) = y_1 + y_2 = a[\sin(kx - \omega t) + \sin(kx - \omega t + \phi)]$$

Using trigonometric identity:

$$y(x,t) = 2a \cos(\varphi/2) \sin(kx - \omega t + \varphi/2)$$

Resultant Amplitude:

```
A(\phi) = 2a \cos(\phi/2)
```

Interference Cases:

Constructive Interference ($\phi = 0, 2\pi, 4\pi, ...$):

```
A = 2a (maximum)

y(x,t) = 2a \sin(kx - \omega t)
```

- Waves in phase
- Amplitudes add
- Maximum resultant amplitude

Destructive Interference ($\phi = \pi$, 3π , 5π , ...):

```
A = 0 (minimum)
y(x,t) = 0
```

- Waves completely out of phase
- Amplitudes cancel
- Zero resultant displacement

Partial Interference (other ϕ values):

```
0 \le A \le 2a
```

• Intermediate amplitudes

• Depends on phase difference

14.6 REFLECTION OF WAVES

Boundary Conditions

Rigid Boundary:

• Condition: Zero displacement at boundary

• **Phase Change**: π (180°)

• **Amplitude**: Same as incident (no energy loss)

Incident Wave: $y_i(x,t) = a \sin(kx - \omega t)$ Reflected Wave: $y_r(x,t) = -a \sin(kx + \omega t)$

Free/Open Boundary:

• Condition: Maximum displacement allowed

• Phase Change: 0

• Amplitude: Same as incident

Reflected Wave: $(y_r(x,t) = a \sin(kx + \omega t))$

Physical Explanation:

Rigid Boundary:

- Boundary exerts reaction force
- Newton's third law creates phase reversal
- Total displacement at boundary = 0

Free Boundary:

- No constraint on boundary motion
- No reaction force
- No phase reversal

14.6.1 Standing Waves and Normal Modes

Formation:

Superposition of incident and reflected waves of same amplitude and frequency

Mathematical Description:

Incident: $y_1(x,t) = a \sin(kx - \omega t)$ **Reflected**: $y_2(x,t) = a \sin(kx + \omega t)$

Resultant:

 $y(x,t) = y_1 + y_2 = 2a \sin(kx) \cos(\omega t)$

Characteristics of Standing Waves:

Key Differences from Traveling Waves:

- No wave propagation: Pattern doesn't move
- Amplitude varies spatially: 2a sin(kx)
- All particles oscillate in phase: Same ω
- Fixed nodes and antinodes: Positions don't change

Nodes and Antinodes:

Nodes (Zero amplitude):

• Condition: $(\sin(kx) = 0)$

- Positions: $(x = n\pi/k = n\lambda/2)$ where n = 0,1,2,3,...
- **Spacing**: $\lambda/2$ between consecutive nodes

Antinodes (Maximum amplitude):

- Condition: $sin(kx) = \pm 1$
- Positions: $x = (n + 1/2)\pi/k = (n + 1/2)\lambda/2$ where n = 0,1,2,3,...
- **Spacing**: λ/2 between consecutive antinodes

Normal Modes of Strings

String Fixed at Both Ends:

Boundary Conditions: x = 0 and x = L are nodes

Allowed Wavelengths:

$$L = n(\lambda/2) \rightarrow \lambda = 2L/n$$

where n = 1,2,3,... (positive integers)

Normal Mode Frequencies:

$$v_n = nv/(2L) = n\sqrt{(T/\mu)/(2L)}$$

Harmonics:

- **n** = **1**: Fundamental frequency (first harmonic)
- **n = 2**: Second harmonic
- **n** = **3**: Third harmonic, etc.

Normal Modes of Air Columns

Pipe Closed at One End:

Boundary Conditions:

- x = 0: Node (closed end)
- x = L: Antinode (open end)

Allowed Wavelengths:

$$L=(n+1/2)(\lambda/2)\to\lambda=4L/(2n+1)$$

where n = 0,1,2,3,...

Normal Mode Frequencies:

$$v_n = (2n + 1)v/(4L)$$

Only Odd Harmonics: v_1 , $3v_1$, $5v_1$, $7v_1$,...

Pipe Open at Both Ends:

Boundary Conditions: Both ends are antinodes

Normal Mode Frequencies:

$$v_n = nv/(2L)$$

All Harmonics Present: v_1 , $2v_1$, $3v_1$, $4v_1$,...

Resonance:

When external frequency matches normal mode frequency, system exhibits resonance with large amplitude oscillations.

14.7 BEATS

Definition:

Beats: Periodic variation in amplitude when two waves of slightly different frequencies interfere

Mathematical Analysis

Two Sound Waves:

```
s_1 = a \cos(\omega_1 t)

s_2 = a \cos(\omega_2 t)
```

Resultant:

$$s = s_1 + s_2 = a[\cos(\omega_1 t) + \cos(\omega_2 t)]$$

Using trigonometric identity:

```
s = 2a \cos(\omega_{\beta}t) \cos(\omega_{a}t)
```

Where:

- $\omega_{\beta} = (\omega_1 \omega_2)/2$ (beat frequency)
- $\left(\omega_a = (\omega_1 + \omega_2)/2\right)$ (average frequency)

Physical Interpretation:

 $s = [2a cos(\omega_{\beta}t)] cos(\omega_{a}t)$

- Amplitude Modulation: (2a cos(ω_βt))
- Carrier Frequency: ω_a
- Amplitude varies with frequency $2\omega_{\beta} = \omega_1 \omega_2$

Beat Frequency:

 $v_{\beta eat} = |v_1 - v_2|$

Applications:

Musical Tuning:

- Musicians use beats to tune instruments
- Eliminate beats by matching frequencies
- Sensitive method for frequency comparison

Frequency Measurement:

- Unknown frequency determined by beat frequency
- Reference frequency provides calibration

Beat Pattern Characteristics:

- **Constructive interference**: Maximum amplitude when waves in phase
- **Destructive interference**: Minimum amplitude when waves out of phase
- **Beat period**: Time between successive maxima = $1/|v_1 v_2|$

SUMMARY OF KEY FORMULAS

Wave Equation:

 $y(x,t) = a \sin(kx - \omega t + \phi)$

Wave Parameters:

• Wavelength: $\lambda = 2\pi/k$

• **Period**: $T = 2\pi/\omega$

• **Frequency**: $v = \omega/(2\pi) = 1/T$

• Wave Speed: $v = \omega/k = \lambda v$

Wave Speeds:

• String: $v = \sqrt{(T/\mu)}$

• Sound in fluid: $v = \sqrt{(B/\rho)}$

• Sound in solid: $v = \sqrt{(Y/\rho)}$

• Sound in gas: $v = \sqrt{(\gamma P/\rho)}$

Standing Waves:

 $y(x,t) = 2a \sin(kx) \cos(\omega t)$

Normal Modes:

- String (both ends fixed): $(v_n = nv/(2L))$
- Pipe (one end closed): $v_n = \frac{(2n+1)v}{(4L)}$

• Pipe (both ends open): $v_n = nv/(2L)$

Beats:

$$v_{\beta eat} = |v_1 - v_2|$$

ExamSprint Watermark