Chapter 5: Work, Energy and Power

5.1 SCALAR PRODUCT (DOT PRODUCT)

Definition: $A \square \cdot B \square = AB \cos \theta$

Properties:

- Result is a scalar quantity
- Commutative: A□ · B□ = B□ · A□
- Distributive: A□ · (B□ + C□) = A□ · B□ + A□ · C□
- $A \square \cdot (\lambda B \square) = \lambda (A \square \cdot B \square)$

Component Form: $A \square \cdot B \square = AxBx + AyBy + AzBz$

Unit Vector Properties:

- $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
- $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$

Geometric Interpretation:

- $A\Box \cdot B\Box = A(B\cos\theta) = B(A\cos\theta)$
- Product of one vector's magnitude and other's component along it

5.2 WORK

Definition: Work done by force $F\square$ over displacement $d\square$: $W = F\square \cdot d\square = Fd \cos \theta$

Key Points:

Scalar quantity

- Units: Joule (J) = N·m
- Dimensions: [ML²T⁻²]

Sign of Work:

- Positive: $0^{\circ} \le \theta < 90^{\circ}$ (force assists motion)
- Negative: $90^{\circ} < \theta \le 180^{\circ}$ (force opposes motion)
- Zero: $\theta = 90^{\circ}$ (force perpendicular to displacement)

No Work Done When:

- 1. Displacement is zero (d = 0)
- 2. Force is zero (F = 0)
- 3. Force perpendicular to displacement ($\theta = 90^{\circ}$)

Work by Variable Force: $W = \int [xi \text{ to } xf] F(x)dx$

5.3 KINETIC ENERGY

Definition: $K = \frac{1}{2}mv^2$

Properties:

- Scalar quantity
- Always positive
- Units: Joule (J)
- Measure of work an object can do by virtue of its motion

5.4 WORK-ENERGY THEOREM

Statement: Change in kinetic energy = Work done by net force

Mathematical Form: Kf - Ki = Wnet Δ K = Wnet

For Variable Force: $Kf - Ki = \int [xi \text{ to } xf] F(x) dx$

Key Insights:

- Integral form of Newton's Second Law
- Scalar form (directional information lost)
- Useful for solving problems without knowing detailed force variation

5.5 POTENTIAL ENERGY

Definition: Energy stored by virtue of position or configuration

Mathematical Relation: F(x) = -dV(x)/dx

Conservative Force: Force derivable from potential energy function

- Work path-independent
- Work zero over closed path
- Examples: Gravity, spring force

Gravitational PE: V(h) = mgh (Near earth's surface, h << RE)

Elastic PE (Spring): $V(x) = \frac{1}{2}kx^2$ (Hooke's Law: Fs = -kx)

5.6 CONSERVATION OF MECHANICAL ENERGY

Statement: For conservative forces only: Total mechanical energy = Kinetic + Potential = Constant

Mathematical Form: E = K + V = constant Ki + Vi = Kf + Vf

Conditions:

- Only conservative forces do work
- No friction or other dissipative forces

For Non-Conservative Forces: Ef - Ei = Wnc (Where Wnc = work by non-conservative forces)

5.7 POWER

Definition: Rate of doing work or transferring energy

Average Power: Pav = W/t

Instantaneous Power: $P = dW/dt = F\Box \cdot v\Box$

Units:

- SI: Watt (W) = J/s
- Practical: Horse Power (hp)
- 1 hp = 746 W

Energy Units:

- $kWh = 3.6 \times 10^6 J$
- Used in electricity bills

5.8 COLLISIONS

Key Principles:

- 1. Momentum Conservation: Always conserved in collisions
- 2. **Energy Considerations:** KE may or may not be conserved

Types of Collisions:

Elastic Collision:

- Kinetic energy conserved
- Momentum conserved
- Objects separate after collision

For 1D Elastic Collision (m2 initially at rest): $v1f = (m1 - m2)/(m1 + m2) \times v1i v2f = 2m1/(m1 + m2) \times v1i$

Special Cases:

- Equal masses: v1f = 0, v2f = v1i
- m2 >> m1: v1f ≈ -v1i, v2f ≈ 0

Inelastic Collision:

- Kinetic energy not conserved
- Momentum conserved
- Some KE converted to other forms

Completely Inelastic:

- Objects stick together after collision
- Maximum KE loss for given collision

For 1D Completely Inelastic: vf = m1v1i/(m1 + m2)

Energy Loss: $\Delta K = (m1m2)/(2(m1 + m2)) \times v1i^2$

2D Collisions:

- Momentum conserved in both directions
- For elastic: Energy also conserved

• Generally need additional information to solve

IMPORTANT FORMULAS SUMMARY

Work and Energy:

- $W = F \square \cdot d \square = F d \cos \theta$
- $K = \frac{1}{2}mv^2$
- $\Delta K = Wnet$

Potential Energy:

- V(h) = mgh (gravitational)
- $V(x) = \frac{1}{2}kx^2$ (elastic)
- F = -dV/dx

Power:

- P = W/t (average)
- $P = F \square \cdot v \square$ (instantaneous)

Conservation:

- E = K + V = constant (conservative forces)
- Ef Ei = Wnc (with non-conservative forces)

Collisions:

- Momentum: p□i = p□f (always)
- Elastic: Ki = Kf (kinetic energy conserved)
- Inelastic: Ki > Kf (kinetic energy not conserved)

PROBLEM-SOLVING STRATEGIES

For Work Problems:

- 1. Identify all forces acting on object
- 2. Find displacement vector
- 3. Calculate work by each force using $W = F \square \cdot d \square$
- 4. Sum to get net work

For Energy Problems:

- 1. Identify conservative vs non-conservative forces
- 2. Choose appropriate energy conservation form
- 3. Set up energy equation at different points
- 4. Account for work by non-conservative forces

For Collision Problems:

- 1. Apply momentum conservation (vector equation)
- 2. For elastic collisions, also apply energy conservation
- 3. Use component form for 2D problems
- 4. Check if additional constraints given

Key Points to Remember:

- Work depends on force and displacement, not just force
- Energy is conserved only with conservative forces
- Power involves rate of energy transfer
- Momentum always conserved in collisions

• Choose reference points for potential energy wisely